April  2011, 30(1): 219-225. doi: 10.3934/dcds.2011.30.219

Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables

1. 

St. Petersburg State Univ., Russian Federation

Received  December 2009 Revised  June 2010 Published  February 2011

We consider the KdV equation on the Sobolev space of periodic distributions. We obtain estimates of the solution of the KdV in terms of action variables.
Citation: Evgeny L. Korotyaev. Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 219-225. doi: 10.3934/dcds.2011.30.219
References:
[1]

J. Bourgain, Periodic Korteweg - de Vries equation with measures as initial data, Selecta Math., 3 (1997), 115-159. doi: 10.1007/s000290050008.

[2]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on R and T, J. Amer. Math. Soc., 16 (2003), 705-749. doi: 10.1090/S0894-0347-03-00421-1.

[3]

H. Flaschka and D. McLaughlin, Canonically conjugate variables for the Korteveg- de Vries equation and the Toda lattice with periodic boundary conditions, Prog. of Theor. Phys., 55 (1976), 438-456. doi: 10.1143/PTP.55.438.

[4]

J. Garnett and E. Trubowitz, Gaps and bands of one dimensional periodic Schrödinger operators, Comment. Math. Helv., 59 (1984), 258-312 doi: 10.1007/BF02566350.

[5]

A. Jenkins, "Univalent Functions and Conformal Mapping," Berlin, Göttingen, Heidelberg: Springer, 1958.

[6]

T. Kappeler and P. Topalov, Global wellposedness of KdV in $H^-1(\T,\R)$, Duke Math. J., 135 (2006), 327-360. doi: 10.1215/S0012-7094-06-13524-X.

[7]

T.Kappeler and J. Pöschel, "Kdv & Kam," Springer, 2003.

[8]

T. Kappeler, C. Möhr and P. Topalov, Birkhoff coordinates for KdV on phase spaces of distributions, Selecta Math. (N.S.), 11 (2005), 37-98.

[9]

P. Kargaev and E. Korotyaev, The inverse problem for the Hill operator, a direct method, Invent. Math., 129 (1997), 567-593. doi: 10.1007/s002220050173.

[10]

E. Korotyaev, Estimates for the Hill operator. I, Journal Diff. Eq., 162 (2000), 1-26. doi: 10.1006/jdeq.1999.3684.

[11]

E. Korotyaev, Estimate for the Hill operator. II, Journal Diff. Eq., 223 (2006), 229-260. doi: 10.1016/j.jde.2005.04.017.

[12]

E. Korotyaev, Characterization of the spectrum of Schrödinger operators with periodic distributions, Int. Math. Res. Not., 2003 (2003), 2019-2031. doi: 10.1155/S1073792803209107.

[13]

E. Korotyaev, The estimates of periodic potentials in terms of effective masses, Commun. Math. Phys., 183 (1997), 383-400. doi: 10.1007/BF02506412.

[14]

E. Korotyaev, Periodic "weighted" operators, J. Differential Equations, 189 (2003), 461-486. doi: 10.1016/S0022-0396(02)00154-7.

[15]

E. Korotyaev, Estimates of KdV Hamiltomian in terms of actions, preprint, 2009.

[16]

S. Kuksin, "Analysis of Hamiltonian PDEs," Oxford Lecture Series in Mathematics and its Applications, 19, Oxford University Press, Oxford, 2000.

[17]

H. McKean and E. Trubowitz, Hill's surfaces and their theta functions, Bull. Am. Math. Soc., 84 (1978), 1042-1085. doi: 10.1090/S0002-9904-1978-14542-X.

[18]

V. Marchenko and I. Ostrovski, A characterization of the spectrum of the Hill operator, Math. USSR Sb., 26 (1975), 493-554. doi: 10.1070/SM1975v026n04ABEH002493.

[19]

V. Marchenko and I. Ostrovski, Approximation of periodic by finite-zone potentials, Selecta Math. Sovietica., 6 (1987), 101-136.

[20]

A. Veselov and S. Novikov, Poisson brackets and complex tori, Proc. Steklov Inst. Math., 165 (1985), 53-65.

show all references

References:
[1]

J. Bourgain, Periodic Korteweg - de Vries equation with measures as initial data, Selecta Math., 3 (1997), 115-159. doi: 10.1007/s000290050008.

[2]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on R and T, J. Amer. Math. Soc., 16 (2003), 705-749. doi: 10.1090/S0894-0347-03-00421-1.

[3]

H. Flaschka and D. McLaughlin, Canonically conjugate variables for the Korteveg- de Vries equation and the Toda lattice with periodic boundary conditions, Prog. of Theor. Phys., 55 (1976), 438-456. doi: 10.1143/PTP.55.438.

[4]

J. Garnett and E. Trubowitz, Gaps and bands of one dimensional periodic Schrödinger operators, Comment. Math. Helv., 59 (1984), 258-312 doi: 10.1007/BF02566350.

[5]

A. Jenkins, "Univalent Functions and Conformal Mapping," Berlin, Göttingen, Heidelberg: Springer, 1958.

[6]

T. Kappeler and P. Topalov, Global wellposedness of KdV in $H^-1(\T,\R)$, Duke Math. J., 135 (2006), 327-360. doi: 10.1215/S0012-7094-06-13524-X.

[7]

T.Kappeler and J. Pöschel, "Kdv & Kam," Springer, 2003.

[8]

T. Kappeler, C. Möhr and P. Topalov, Birkhoff coordinates for KdV on phase spaces of distributions, Selecta Math. (N.S.), 11 (2005), 37-98.

[9]

P. Kargaev and E. Korotyaev, The inverse problem for the Hill operator, a direct method, Invent. Math., 129 (1997), 567-593. doi: 10.1007/s002220050173.

[10]

E. Korotyaev, Estimates for the Hill operator. I, Journal Diff. Eq., 162 (2000), 1-26. doi: 10.1006/jdeq.1999.3684.

[11]

E. Korotyaev, Estimate for the Hill operator. II, Journal Diff. Eq., 223 (2006), 229-260. doi: 10.1016/j.jde.2005.04.017.

[12]

E. Korotyaev, Characterization of the spectrum of Schrödinger operators with periodic distributions, Int. Math. Res. Not., 2003 (2003), 2019-2031. doi: 10.1155/S1073792803209107.

[13]

E. Korotyaev, The estimates of periodic potentials in terms of effective masses, Commun. Math. Phys., 183 (1997), 383-400. doi: 10.1007/BF02506412.

[14]

E. Korotyaev, Periodic "weighted" operators, J. Differential Equations, 189 (2003), 461-486. doi: 10.1016/S0022-0396(02)00154-7.

[15]

E. Korotyaev, Estimates of KdV Hamiltomian in terms of actions, preprint, 2009.

[16]

S. Kuksin, "Analysis of Hamiltonian PDEs," Oxford Lecture Series in Mathematics and its Applications, 19, Oxford University Press, Oxford, 2000.

[17]

H. McKean and E. Trubowitz, Hill's surfaces and their theta functions, Bull. Am. Math. Soc., 84 (1978), 1042-1085. doi: 10.1090/S0002-9904-1978-14542-X.

[18]

V. Marchenko and I. Ostrovski, A characterization of the spectrum of the Hill operator, Math. USSR Sb., 26 (1975), 493-554. doi: 10.1070/SM1975v026n04ABEH002493.

[19]

V. Marchenko and I. Ostrovski, Approximation of periodic by finite-zone potentials, Selecta Math. Sovietica., 6 (1987), 101-136.

[20]

A. Veselov and S. Novikov, Poisson brackets and complex tori, Proc. Steklov Inst. Math., 165 (1985), 53-65.

[1]

Paolo Perfetti. Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 379-391. doi: 10.3934/dcds.1998.4.379

[2]

Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169

[3]

Jan-Cornelius Molnar. On two-sided estimates for the nonlinear Fourier transform of KdV. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3339-3356. doi: 10.3934/dcds.2016.36.3339

[4]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[5]

Xiaoxiao Zheng, Hui Wu. Orbital stability of periodic traveling wave solutions to the coupled compound KdV and MKdV equations with two components. Mathematical Foundations of Computing, 2020, 3 (1) : 11-24. doi: 10.3934/mfc.2020002

[6]

Brandon Seward. Every action of a nonamenable group is the factor of a small action. Journal of Modern Dynamics, 2014, 8 (2) : 251-270. doi: 10.3934/jmd.2014.8.251

[7]

Michael Hutchings. Mean action and the Calabi invariant. Journal of Modern Dynamics, 2016, 10: 511-539. doi: 10.3934/jmd.2016.10.511

[8]

David Bechara Senior, Umberto L. Hryniewicz, Pedro A. S. Salomão. On the relation between action and linking. Journal of Modern Dynamics, 2021, 17: 319-336. doi: 10.3934/jmd.2021011

[9]

Valentin Ovsienko, MichaeL Shapiro. Cluster algebras with Grassmann variables. Electronic Research Announcements, 2019, 26: 1-15. doi: 10.3934/era.2019.26.001

[10]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

[11]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[12]

Evgeny Korotyaev, Natalia Saburova. Two-sided estimates of total bandwidth for Schrödinger operators on periodic graphs. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1691-1714. doi: 10.3934/cpaa.2022042

[13]

S. A. Krat. On pairs of metrics invariant under a cocompact action of a group. Electronic Research Announcements, 2001, 7: 79-86.

[14]

Alexandre Rocha, Mário Jorge Dias Carneiro. A dynamical condition for differentiability of Mather's average action. Journal of Geometric Mechanics, 2014, 6 (4) : 549-566. doi: 10.3934/jgm.2014.6.549

[15]

Wei Xu, Liying Yu, Gui-Hua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2531-2549. doi: 10.3934/jimo.2019068

[16]

Luigi Ambrosio, Camillo Brena. Stability of a class of action functionals depending on convex functions. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022055

[17]

Juan-Ming Yuan, Jiahong Wu. The complex KdV equation with or without dissipation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 489-512. doi: 10.3934/dcdsb.2005.5.489

[18]

Raphael Stuhlmeier. KdV theory and the Chilean tsunami of 1960. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 623-632. doi: 10.3934/dcdsb.2009.12.623

[19]

Jean-Paul Chehab, Georges Sadaka. On damping rates of dissipative KdV equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1487-1506. doi: 10.3934/dcdss.2013.6.1487

[20]

Nate Bottman, Bernard Deconinck. KdV cnoidal waves are spectrally stable. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1163-1180. doi: 10.3934/dcds.2009.25.1163

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]