Advanced Search
Article Contents
Article Contents

Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity

Abstract Related Papers Cited by
  • In this paper, we consider the relation between $p > 1$ and critical dimension of the extremal solution of the semilinear equation

    $\beta \Delta^{2}u-\tau \Delta u=\frac{\lambda}{(1-u)^{p}} \mbox{in} B$,
    $0 < u \leq 1 \mbox{in} B$,
    $u=\Delta u=0 \mbox{on} \partial B$,

    where $B$ is the unit ball in $R^{n}$, $\lambda>0$ is a parameter, $\tau>0, \beta>0,p>1$ are fixed constants. By Hardy-Rellich inequality, we find that when $p$ is large enough, the critical dimension is 13.

    Mathematics Subject Classification: Primary 35B45; Secondary 35J40.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math., 12 (1959), 623-727.doi: 10.1002/cpa.3160120405.


    C. Cowan, P. Esposito, N. Ghoussoub and A. Moradifam, The critical dimension for a forth order elliptic problem with singular nonlineartiy, Arch. Ration. Mech. Anal., 198 (2010), 763-787.doi: 10.1007/s00205-010-0367-x.


    M. G. Crandall and P. H. Rabinawitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal., 58 (1975), 207-218.doi: 10.1007/BF00280741.


    P. Esposito, N. Ghoussoub and Y. Guo, Mathematical analysis of partial differential equations modeling electrostatic MEMS, Research Monograph, under review (2007).


    A. Ferrero and G. Warnault, On solutions of second and fourth order elliptic equations with power-type nonlinearities, Nonlinear Anal., 70 (2009), 2889-2902.doi: 10.1016/j.na.2008.12.041.


    Z. M. Guo and J. C. Wei, Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity, Manuscript Math., 120 (2006), 193-209.doi: 10.1007/s00229-006-0001-2.


    Z. Gui and J. Wei, On a fourth order nonlinear elliptic equation with negative exponent, SLAM J. Math. Anal., 40 (2009), 2034-2054.doi: 10.1137/070703375.


    H. Jian and F. Lin, Zero set of Sobolev functions with negative power of integrability, Chin. Ann. Math B, 25 (2004), 65-72.doi: 10.1142/S0252959904000068.


    F. Lin and Y. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation, Proc. R. Soc. A, 463 (2007), 1323-1337.doi: 10.1098/rspa.2007.1816.


    A. M. Meadows, Stable and singular solutions of the equation $\Delta u=\frac{1}{u}$, Indiana Univ Math. J., 53 (2004), 1681-1703.doi: 10.1512/iumj.2004.53.2560.


    A. Moradifam, On the critical dimension of a fourth order elliptic problem with negative exponent, J. of Differential Equations, 248 (2010), 594-616.doi: 10.1016/j.jde.2009.09.011.


    F. Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung, in "Proceedings of the International Congress of Mathematicians Amsterdam (1954)" (J. C. H. Gerretsen et al. eds.), 3, Nordhoff, Groningen, (1956), 243-250.


    D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equations, Calc. Var. and PDE, 37 (2010), 259-274.doi: 10.1007/s00526-009-0262-1.

  • 加载中

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint