-
Previous Article
Positive topological entropy for multidimensional perturbations of topologically crossing homoclinicity
- DCDS Home
- This Issue
-
Next Article
Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables
Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity
1. | Institute of Contemporary Mathematics, Henan University, School of Mathematics and Information Science, Henan University, Kaifeng 475004, China |
2. | School of Mathematics and Information Science, Henan University, Kaifeng 475004, China |
$\beta \Delta^{2}u-\tau \Delta u=\frac{\lambda}{(1-u)^{p}} \mbox{in} B$,
$0 < u \leq 1 \mbox{in} B$,
$u=\Delta u=0 \mbox{on} \partial B$,
where $B$ is the unit ball in $R^{n}$, $\lambda>0$ is a parameter, $\tau>0, \beta>0,p>1$ are fixed constants. By Hardy-Rellich inequality, we find that when $p$ is large enough, the critical dimension is 13.
References:
[1] |
S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math., 12 (1959), 623-727.
doi: 10.1002/cpa.3160120405. |
[2] |
C. Cowan, P. Esposito, N. Ghoussoub and A. Moradifam, The critical dimension for a forth order elliptic problem with singular nonlineartiy, Arch. Ration. Mech. Anal., 198 (2010), 763-787.
doi: 10.1007/s00205-010-0367-x. |
[3] |
M. G. Crandall and P. H. Rabinawitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal., 58 (1975), 207-218.
doi: 10.1007/BF00280741. |
[4] |
P. Esposito, N. Ghoussoub and Y. Guo, Mathematical analysis of partial differential equations modeling electrostatic MEMS, Research Monograph, under review (2007). |
[5] |
A. Ferrero and G. Warnault, On solutions of second and fourth order elliptic equations with power-type nonlinearities, Nonlinear Anal., 70 (2009), 2889-2902.
doi: 10.1016/j.na.2008.12.041. |
[6] |
Z. M. Guo and J. C. Wei, Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity, Manuscript Math., 120 (2006), 193-209.
doi: 10.1007/s00229-006-0001-2. |
[7] |
Z. Gui and J. Wei, On a fourth order nonlinear elliptic equation with negative exponent, SLAM J. Math. Anal., 40 (2009), 2034-2054.
doi: 10.1137/070703375. |
[8] |
H. Jian and F. Lin, Zero set of Sobolev functions with negative power of integrability, Chin. Ann. Math B, 25 (2004), 65-72.
doi: 10.1142/S0252959904000068. |
[9] |
F. Lin and Y. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation, Proc. R. Soc. A, 463 (2007), 1323-1337.
doi: 10.1098/rspa.2007.1816. |
[10] |
A. M. Meadows, Stable and singular solutions of the equation $\Delta u=\frac{1}{u}$, Indiana Univ Math. J., 53 (2004), 1681-1703.
doi: 10.1512/iumj.2004.53.2560. |
[11] |
A. Moradifam, On the critical dimension of a fourth order elliptic problem with negative exponent, J. of Differential Equations, 248 (2010), 594-616.
doi: 10.1016/j.jde.2009.09.011. |
[12] |
F. Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung, in "Proceedings of the International Congress of Mathematicians Amsterdam (1954)" (J. C. H. Gerretsen et al. eds.), 3, Nordhoff, Groningen, (1956), 243-250. |
[13] |
D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equations, Calc. Var. and PDE, 37 (2010), 259-274.
doi: 10.1007/s00526-009-0262-1. |
show all references
References:
[1] |
S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math., 12 (1959), 623-727.
doi: 10.1002/cpa.3160120405. |
[2] |
C. Cowan, P. Esposito, N. Ghoussoub and A. Moradifam, The critical dimension for a forth order elliptic problem with singular nonlineartiy, Arch. Ration. Mech. Anal., 198 (2010), 763-787.
doi: 10.1007/s00205-010-0367-x. |
[3] |
M. G. Crandall and P. H. Rabinawitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal., 58 (1975), 207-218.
doi: 10.1007/BF00280741. |
[4] |
P. Esposito, N. Ghoussoub and Y. Guo, Mathematical analysis of partial differential equations modeling electrostatic MEMS, Research Monograph, under review (2007). |
[5] |
A. Ferrero and G. Warnault, On solutions of second and fourth order elliptic equations with power-type nonlinearities, Nonlinear Anal., 70 (2009), 2889-2902.
doi: 10.1016/j.na.2008.12.041. |
[6] |
Z. M. Guo and J. C. Wei, Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity, Manuscript Math., 120 (2006), 193-209.
doi: 10.1007/s00229-006-0001-2. |
[7] |
Z. Gui and J. Wei, On a fourth order nonlinear elliptic equation with negative exponent, SLAM J. Math. Anal., 40 (2009), 2034-2054.
doi: 10.1137/070703375. |
[8] |
H. Jian and F. Lin, Zero set of Sobolev functions with negative power of integrability, Chin. Ann. Math B, 25 (2004), 65-72.
doi: 10.1142/S0252959904000068. |
[9] |
F. Lin and Y. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation, Proc. R. Soc. A, 463 (2007), 1323-1337.
doi: 10.1098/rspa.2007.1816. |
[10] |
A. M. Meadows, Stable and singular solutions of the equation $\Delta u=\frac{1}{u}$, Indiana Univ Math. J., 53 (2004), 1681-1703.
doi: 10.1512/iumj.2004.53.2560. |
[11] |
A. Moradifam, On the critical dimension of a fourth order elliptic problem with negative exponent, J. of Differential Equations, 248 (2010), 594-616.
doi: 10.1016/j.jde.2009.09.011. |
[12] |
F. Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung, in "Proceedings of the International Congress of Mathematicians Amsterdam (1954)" (J. C. H. Gerretsen et al. eds.), 3, Nordhoff, Groningen, (1956), 243-250. |
[13] |
D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equations, Calc. Var. and PDE, 37 (2010), 259-274.
doi: 10.1007/s00526-009-0262-1. |
[1] |
Craig Cowan, Pierpaolo Esposito, Nassif Ghoussoub. Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1033-1050. doi: 10.3934/dcds.2010.28.1033 |
[2] |
Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831 |
[3] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[4] |
Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851 |
[5] |
Changbing Hu. Stability of under-compressive waves with second and fourth order diffusions. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 629-662. doi: 10.3934/dcds.2008.22.629 |
[6] |
Feliz Minhós, João Fialho. Existence and multiplicity of solutions in fourth order BVPs with unbounded nonlinearities. Conference Publications, 2013, 2013 (special) : 555-564. doi: 10.3934/proc.2013.2013.555 |
[7] |
Feliz Minhós. Periodic solutions for some fully nonlinear fourth order differential equations. Conference Publications, 2011, 2011 (Special) : 1068-1077. doi: 10.3934/proc.2011.2011.1068 |
[8] |
To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694 |
[9] |
Tokushi Sato, Tatsuya Watanabe. Singular positive solutions for a fourth order elliptic problem in $R$. Communications on Pure and Applied Analysis, 2011, 10 (1) : 245-268. doi: 10.3934/cpaa.2011.10.245 |
[10] |
John R. Graef, Lingju Kong, Min Wang. Existence of multiple solutions to a discrete fourth order periodic boundary value problem. Conference Publications, 2013, 2013 (special) : 291-299. doi: 10.3934/proc.2013.2013.291 |
[11] |
John B. Greer, Andrea L. Bertozzi. $H^1$ Solutions of a class of fourth order nonlinear equations for image processing. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 349-366. doi: 10.3934/dcds.2004.10.349 |
[12] |
Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225 |
[13] |
John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269-275. doi: 10.3934/proc.2009.2009.269 |
[14] |
Craig Cowan. Uniqueness of solutions for elliptic systems and fourth order equations involving a parameter. Communications on Pure and Applied Analysis, 2016, 15 (2) : 519-533. doi: 10.3934/cpaa.2016.15.519 |
[15] |
Takahiro Hashimoto. Existence and nonexistence of nontrivial solutions of some nonlinear fourth order elliptic equations. Conference Publications, 2003, 2003 (Special) : 393-402. doi: 10.3934/proc.2003.2003.393 |
[16] |
M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure and Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557 |
[17] |
Marco Donatelli, Luca Vilasi. Existence of multiple solutions for a fourth-order problem with variable exponent. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2471-2481. doi: 10.3934/dcdsb.2021141 |
[18] |
Juhong Kuang, Weiyi Chen, Zhiming Guo. Periodic solutions with prescribed minimal period for second order even Hamiltonian systems. Communications on Pure and Applied Analysis, 2022, 21 (1) : 47-59. doi: 10.3934/cpaa.2021166 |
[19] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[20] |
Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]