• Previous Article
    Positive topological entropy for multidimensional perturbations of topologically crossing homoclinicity
  • DCDS Home
  • This Issue
  • Next Article
    Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables
April  2011, 30(1): 227-241. doi: 10.3934/dcds.2011.30.227

Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity

1. 

Institute of Contemporary Mathematics, Henan University, School of Mathematics and Information Science, Henan University, Kaifeng 475004, China

2. 

School of Mathematics and Information Science, Henan University, Kaifeng 475004, China

Received  January 2010 Revised  May 2010 Published  February 2011

In this paper, we consider the relation between $p > 1$ and critical dimension of the extremal solution of the semilinear equation

$\beta \Delta^{2}u-\tau \Delta u=\frac{\lambda}{(1-u)^{p}} \mbox{in} B$,
$0 < u \leq 1 \mbox{in} B$,
$u=\Delta u=0 \mbox{on} \partial B$,

where $B$ is the unit ball in $R^{n}$, $\lambda>0$ is a parameter, $\tau>0, \beta>0,p>1$ are fixed constants. By Hardy-Rellich inequality, we find that when $p$ is large enough, the critical dimension is 13.

Citation: Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405.

[2]

C. Cowan, P. Esposito, N. Ghoussoub and A. Moradifam, The critical dimension for a forth order elliptic problem with singular nonlineartiy, Arch. Ration. Mech. Anal., 198 (2010), 763-787. doi: 10.1007/s00205-010-0367-x.

[3]

M. G. Crandall and P. H. Rabinawitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal., 58 (1975), 207-218. doi: 10.1007/BF00280741.

[4]

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical analysis of partial differential equations modeling electrostatic MEMS, Research Monograph, under review (2007).

[5]

A. Ferrero and G. Warnault, On solutions of second and fourth order elliptic equations with power-type nonlinearities, Nonlinear Anal., 70 (2009), 2889-2902. doi: 10.1016/j.na.2008.12.041.

[6]

Z. M. Guo and J. C. Wei, Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity, Manuscript Math., 120 (2006), 193-209. doi: 10.1007/s00229-006-0001-2.

[7]

Z. Gui and J. Wei, On a fourth order nonlinear elliptic equation with negative exponent, SLAM J. Math. Anal., 40 (2009), 2034-2054. doi: 10.1137/070703375.

[8]

H. Jian and F. Lin, Zero set of Sobolev functions with negative power of integrability, Chin. Ann. Math B, 25 (2004), 65-72. doi: 10.1142/S0252959904000068.

[9]

F. Lin and Y. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation, Proc. R. Soc. A, 463 (2007), 1323-1337. doi: 10.1098/rspa.2007.1816.

[10]

A. M. Meadows, Stable and singular solutions of the equation $\Delta u=\frac{1}{u}$, Indiana Univ Math. J., 53 (2004), 1681-1703. doi: 10.1512/iumj.2004.53.2560.

[11]

A. Moradifam, On the critical dimension of a fourth order elliptic problem with negative exponent, J. of Differential Equations, 248 (2010), 594-616. doi: 10.1016/j.jde.2009.09.011.

[12]

F. Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung, in "Proceedings of the International Congress of Mathematicians Amsterdam (1954)" (J. C. H. Gerretsen et al. eds.), 3, Nordhoff, Groningen, (1956), 243-250.

[13]

D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equations, Calc. Var. and PDE, 37 (2010), 259-274. doi: 10.1007/s00526-009-0262-1.

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405.

[2]

C. Cowan, P. Esposito, N. Ghoussoub and A. Moradifam, The critical dimension for a forth order elliptic problem with singular nonlineartiy, Arch. Ration. Mech. Anal., 198 (2010), 763-787. doi: 10.1007/s00205-010-0367-x.

[3]

M. G. Crandall and P. H. Rabinawitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal., 58 (1975), 207-218. doi: 10.1007/BF00280741.

[4]

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical analysis of partial differential equations modeling electrostatic MEMS, Research Monograph, under review (2007).

[5]

A. Ferrero and G. Warnault, On solutions of second and fourth order elliptic equations with power-type nonlinearities, Nonlinear Anal., 70 (2009), 2889-2902. doi: 10.1016/j.na.2008.12.041.

[6]

Z. M. Guo and J. C. Wei, Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity, Manuscript Math., 120 (2006), 193-209. doi: 10.1007/s00229-006-0001-2.

[7]

Z. Gui and J. Wei, On a fourth order nonlinear elliptic equation with negative exponent, SLAM J. Math. Anal., 40 (2009), 2034-2054. doi: 10.1137/070703375.

[8]

H. Jian and F. Lin, Zero set of Sobolev functions with negative power of integrability, Chin. Ann. Math B, 25 (2004), 65-72. doi: 10.1142/S0252959904000068.

[9]

F. Lin and Y. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation, Proc. R. Soc. A, 463 (2007), 1323-1337. doi: 10.1098/rspa.2007.1816.

[10]

A. M. Meadows, Stable and singular solutions of the equation $\Delta u=\frac{1}{u}$, Indiana Univ Math. J., 53 (2004), 1681-1703. doi: 10.1512/iumj.2004.53.2560.

[11]

A. Moradifam, On the critical dimension of a fourth order elliptic problem with negative exponent, J. of Differential Equations, 248 (2010), 594-616. doi: 10.1016/j.jde.2009.09.011.

[12]

F. Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung, in "Proceedings of the International Congress of Mathematicians Amsterdam (1954)" (J. C. H. Gerretsen et al. eds.), 3, Nordhoff, Groningen, (1956), 243-250.

[13]

D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equations, Calc. Var. and PDE, 37 (2010), 259-274. doi: 10.1007/s00526-009-0262-1.

[1]

Craig Cowan, Pierpaolo Esposito, Nassif Ghoussoub. Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1033-1050. doi: 10.3934/dcds.2010.28.1033

[2]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[3]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[4]

Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851

[5]

Changbing Hu. Stability of under-compressive waves with second and fourth order diffusions. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 629-662. doi: 10.3934/dcds.2008.22.629

[6]

Feliz Minhós, João Fialho. Existence and multiplicity of solutions in fourth order BVPs with unbounded nonlinearities. Conference Publications, 2013, 2013 (special) : 555-564. doi: 10.3934/proc.2013.2013.555

[7]

Feliz Minhós. Periodic solutions for some fully nonlinear fourth order differential equations. Conference Publications, 2011, 2011 (Special) : 1068-1077. doi: 10.3934/proc.2011.2011.1068

[8]

To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694

[9]

Tokushi Sato, Tatsuya Watanabe. Singular positive solutions for a fourth order elliptic problem in $R$. Communications on Pure and Applied Analysis, 2011, 10 (1) : 245-268. doi: 10.3934/cpaa.2011.10.245

[10]

John R. Graef, Lingju Kong, Min Wang. Existence of multiple solutions to a discrete fourth order periodic boundary value problem. Conference Publications, 2013, 2013 (special) : 291-299. doi: 10.3934/proc.2013.2013.291

[11]

John B. Greer, Andrea L. Bertozzi. $H^1$ Solutions of a class of fourth order nonlinear equations for image processing. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 349-366. doi: 10.3934/dcds.2004.10.349

[12]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[13]

John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269-275. doi: 10.3934/proc.2009.2009.269

[14]

Craig Cowan. Uniqueness of solutions for elliptic systems and fourth order equations involving a parameter. Communications on Pure and Applied Analysis, 2016, 15 (2) : 519-533. doi: 10.3934/cpaa.2016.15.519

[15]

Takahiro Hashimoto. Existence and nonexistence of nontrivial solutions of some nonlinear fourth order elliptic equations. Conference Publications, 2003, 2003 (Special) : 393-402. doi: 10.3934/proc.2003.2003.393

[16]

M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure and Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557

[17]

Marco Donatelli, Luca Vilasi. Existence of multiple solutions for a fourth-order problem with variable exponent. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2471-2481. doi: 10.3934/dcdsb.2021141

[18]

Juhong Kuang, Weiyi Chen, Zhiming Guo. Periodic solutions with prescribed minimal period for second order even Hamiltonian systems. Communications on Pure and Applied Analysis, 2022, 21 (1) : 47-59. doi: 10.3934/cpaa.2021166

[19]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[20]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]