\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Positive topological entropy for multidimensional perturbations of topologically crossing homoclinicity

Abstract Related Papers Cited by
  • In this paper, we consider a one-parameter family $F_{\lambda }$ of continuous maps on $\mathbb{R}^{m}$ or $\mathbb{R}^{m}\times \mathbb{R}^{k}$ with the singular map $F_{0}$ having one of the forms (i) $F_{0}(x)=f(x),$ (ii) $F_{0}(x,y)=(f(x),g(x))$, where $g:\mathbb{R}^{m}\rightarrow \mathbb{R} ^{k}$ is continuous, and (iii) $F_{0}(x,y)=(f(x),g(x,y))$, where $g:\mathbb{R}^{m}\times \mathbb{R}^{k}\rightarrow \mathbb{R}^{k}$ is continuous and locally trapping along the second variable $y$. We show that if $f:\mathbb{R}^{m}\rightarrow \mathbb{R}^{m}$ is a $C^{1}$ diffeomorphism having a topologically crossing homoclinic point, then $F_{\lambda }$ has positive topological entropy for all $\lambda $ close enough to $0$.
    Mathematics Subject Classification: Primary: 37D45, 37B30; Secondary: 37B10, 37B40, 37J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Burns and H. Weiss, A geometric criterion for positive topological entropy, Comm. Math. Phys., 172 (1995), 95-118.doi: 10.1007/BF02104512.

    [2]

    M. Gidea and C. Robinson, Topologically crossing heteroclinic connections to invariant tori, J. Differential Equations, 193 (2003), 49-74.doi: 10.1016/S0022-0396(03)00065-2.

    [3]

    M. Gidea and P. Zgliczyński, Covering relations for multidimensional dynamical systems-II, J. Differential Equations, 202 (2004), 59-80.doi: 10.1016/j.jde.2004.03.014.

    [4]

    J. Juang, M.-C. Li and M. Malkin, Chaotic difference equations in two variables and their multidimensional perturbations, Nonlinearity, 21 (2008), 1019-1040.doi: 10.1088/0951-7715/21/5/007.

    [5]

    M.-C. Li and M.-J. Lyu, Topological dynamics for multidimensional perturbations of maps with covering relations and Liapunov condition, J. Differential Equations, 250 (2011), 799-812.doi: 10.1016/j.jde.2010.06.019.

    [6]

    M.-C Li, M.-J. Lyu and P. Zgliczyński, Topological entropy for multidimensional perturbations of snap-back repellers and one-dimensional maps, Nonlinearity, 21 (2008), 2555-2567.doi: 10.1088/0951-7715/21/11/005.

    [7]

    M.-C. Li and M. Malkin, Topological horseshoes for perturbations of singular difference equations, Nonlinearity, 19 (2006), 795-811.doi: 10.1088/0951-7715/19/4/002.

    [8]

    M. Misiurewicz and P. Zgliczyński, Topological entropy for multidimensional perturbations of one-dimensional maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 1443-1446.doi: 10.1142/S021812740100281X.

    [9]

    C. Robinson, "Dynamical Systems: Stability, Symbolic Dynamics, and Chaos," 2nd edition, CRC Press, Boca Raton, FL, 1999.

    [10]

    J. T. Schwartz, "Nonlinear Functional Analysis," Gordon and Breach Science Publishers, New York, 1969.

    [11]

    L.-S. Young, Chaotic phenomena in three settings: Large, noisy and out of equilibrium, Nonlinearity, 21 (2008), T245-T252.doi: 10.1088/0951-7715/21/11/T04.

    [12]

    P. Zgliczyński, Fixed point index for iterations, topological horseshoe and chaos, Topological Methods in Nonlinear Analysis, 8 (1996), 169-177.

    [13]

    P. Zgliczyński, Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity, 10 (1997), 243-252.doi: 10.1088/0951-7715/10/1/016.

    [14]

    P. Zgliczyński and M. Gidea, Covering relations for multidimensional dynamical systems, J. Differential Equations, 202 (2004), 32-58.doi: 10.1016/j.jde.2004.03.013.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(77) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return