Citation: |
[1] |
R. L. Devaney, Triple collision in the planar isosceles three body problem, Invent. Math., 60 (1980), 249-267.doi: 10.1007/BF01390017. |
[2] |
S. R. Kaplan, Symbolic dynamics of the collinear three-body problem, in "Geometry and Topology in Dynamics" (eds. M. Barge and K. Kuperberg), Contemp. Math., 246, Amer. Math. Soc., (1999), 143-162. |
[3] |
R. McGehee, Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227.doi: 10.1007/BF01390175. |
[4] |
K. Meyer and Q. Wang, The collinear three-body problem with negative energy, J. Differential Equations, 119 (1995), 284-309.doi: 10.1006/jdeq.1995.1092. |
[5] |
J. J. Morales-Ruiz and J. P. Ramis, A note on the non-integrability of some Hamiltonian systems with a homogeneous potential, Methods Appl. Anal., 8 (2001), 113-120. |
[6] |
D. G. Saari and Z. Xia, The existence of oscillatory and super hyperbolic motion in newtonian systems, J. Differential Equations, 82 (1989), 342-355.doi: 10.1016/0022-0396(89)90137-X. |
[7] |
M. M. Saito and K. Tanikawa, The rectilinear three-body problem using symbol sequence I: Role of triple collision, Celest. Mech. Dyn. Astr., 98 (2007), 95-120.doi: 10.1007/s10569-007-9070-0. |
[8] |
M. M. Saito and K. Tanikawa, The rectilinear three-body problem using symbol sequence II: Role of the periodic orbits, Celest. Mech. Dyn. Astr., 103 (2009), 191-207.doi: 10.1007/s10569-008-9175-0. |
[9] |
C. Siegel and J. Moser, "Lectures on Celestial Mechanics," Springer-Verlag, New York-Heidelberg, 1971. |
[10] |
C. Simó, Masses for which triple collision is regularizable, Celestial Mech., 21 (1980), 25-36.doi: 10.1007/BF01230243. |
[11] |
H. Yoshida, A criterion for the non-existence of an additional integral in Hamiltonian systems with a homogeneous potential, Physica D, 29 (1987), 128-142.doi: 10.1016/0167-2789(87)90050-9. |