Advanced Search
Article Contents
Article Contents

Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups

Abstract Related Papers Cited by
  • We consider the dynamics of semi-hyperbolic semigroups generated by finitely many rational maps on the Riemann sphere. Assuming that the nice open set condition holds it is proved that there exists a geometric measure on the Julia set with exponent $h$ equal to the Hausdorff dimension of the Julia set. Both $h$-dimensional Hausdorff and packing measures are finite and positive on the Julia set and are mutually equivalent with Radon-Nikodym derivatives uniformly separated from zero and infinity. All three fractal dimensions, Hausdorff, packing and box counting are equal. It is also proved that for the canonically associated skew-product map there exists a unique $h$-conformal measure. Furthermore, it is shown that this conformal measure admits a unique Borel probability absolutely continuous invariant (under the skew-product map) measure. In fact these two measures are equivalent, and the invariant measure is metrically exact, hence ergodic.
    Mathematics Subject Classification: Primary: 37F35; Secondary: 37F15.


    \begin{equation} \\ \end{equation}
  • [1]

    J. Aaronson, "An Introduction to Infinite Ergodic Theory," Mathematical Surveys and Monographs Vol. 50, American Mathematical Society, 1997.


    R. Brück, Geometric properties of Julia sets of the composition of polynomials of the form $z^2+c_n$, Pacific J. Math., 198 (2001), 347-372.doi: 10.2140/pjm.2001.198.347.


    R. Brück, M. Büger and S. Reitz, Random iterations of polynomials of the form $z^2+c_n$: Connectedness of Julia sets, Ergodic Theory Dynam. Systems, 19 (1999), 1221-1231.doi: 10.1017/S0143385799141658.


    M. Büger, Self-similarity of Julia sets of the composition of polynomials, Ergodic Theory Dynam. Systems, 17 (1997), 1289-1297.doi: 10.1017/S0143385797086458.


    M. Büger, On the composition of polynomials of the form $z^2+c_n$, Math. Ann., 310 (1998), 661-683.


    L. Carleson, P. W. Jones and J. -C. Yoccoz, Julia and John, Bol. Soc. Brazil. Math., 25 (1994), 1-30.


    M. Denker and M. Urbański, On the existence of conformal measures, Trans. Amer. Math. Soc., 328 (1991), 563-587.doi: 10.2307/2001795.


    M. Denker and M. Urbański, Ergodic theory of equilibrium states for rational maps, Nonlinearity, 4 (1991), 103-134.doi: 10.1088/0951-7715/4/1/008.


    M. Denker and M. Urbański, On Sullivan's conformal measures for rational maps of the Riemann sphere, Nonlinearity, 4 (1991), 365-384.doi: 10.1088/0951-7715/4/2/008.


    R. Devaney, "An Introduction to Chaotic Dynamical Systems," Reprint of the second (1989) edition. Studies in Nonlinearity, Westview Press, Boulder, CO, 2003.


    K. Falconer, "Techniques in Fractal Geometry," John Wiley & Sons, 1997.


    H. Federer, "Geometric Measure Theory," Springer, 1969.


    J. E. Fornaess and N. Sibony, Random iterations of rational functions, Ergodic Theory Dynam. Systems, 11 (1991), 687-708.doi: 10.1017/S0143385700006428.


    Z. Gong, W. Qiu and Y. Li, Connectedness of Julia sets for a quadratic random dynamical system, Ergodic Theory Dynam. Systems, 23 (2003), 1807-1815.doi: 10.1017/S0143385703000129.


    A. Hinkkanen and G. J. Martin, The dynamics of semigroups of rational functions I, Proc. London Math. Soc. (3), 73 (1996), 358-384.doi: 10.1112/plms/s3-73.2.358.


    A. Hinkkanen and G. J. Martin, Julia Sets of Rational Semigroups, Math. Z., 222 (1996), 161-169.


    M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems, 3 (1983), 351-386.


    M. MartensThe existence of σ-finite invariant measures, Applications to real one-dimensional dynamics, Front for the Math., http://front.math.ucdavis.edu/math.DS/9201300.


    P. Mattila, "Geometry of Sets and Measures in Euclidean spaces. Fractals and Rectifiability," Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995.


    R. D. Mauldin, T. Szarek and M. Urbański, Graph directed Markov systems on Hilbert spaces, Math. Proc. Cambridge Phil. Soc., 147 (2009), 455-488.doi: 10.1017/S0305004109002448.


    R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3), 73 (1996), 105-154.doi: 10.1112/plms/s3-73.1.105.


    R. D. Mauldin and M. Urbański, "Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets," Cambridge Univ. Press, 2003.doi: 10.1017/CBO9780511543050.


    J. Milnor, "Dynamics in One Complex Variable (Third Edition)," Annals of Mathematical Studies, Number 160, Princeton University Press, 2006.


    V. Mayer, B. Skorulski and M. Urbański, Random distance expanding mappings, thermodynamic formalism, Gibbs measures, and fractal geometry, preprint 2008, http://www.math.unt.edu/ urbanski/papers.html.


    W. Parry, "Entropy and Generators in Ergodic Theory," Mathematics Lecture Note Series, 1969, Benjamin Inc., 1969.


    F. Przytycki and M. Urbański, "Fractals in the Plane - The Ergodic Theory Methods," to be published from Cambridge University Press, see http://www.math.unt.edu/ urbanski/.


    D. Ruelle, "Thermodynamic Formalism," Encyclopedia of Math. and Appl., 5, Addison-Wesley, Reading Mass., 1978.


    R. Stankewitz, Completely invariant Julia sets of polynomial semigroups, Proc. Amer. Math. Soc., 127 (1999), 2889-2898.doi: 10.1090/S0002-9939-99-04857-1.


    R. Stankewitz, Completely invariant sets of normality for rational semigroups, Complex Variables Theory Appl., 40 (2000), 199-210.


    R. Stankewitz, Uniformly perfect sets, rational semigroups, Kleinian groups and IFS's, Proc. Amer. Math. Soc., 128 (2000), 2569-2575.doi: 10.1090/S0002-9939-00-05313-2.


    R. Stankewitz, T. Sugawa and H. Sumi, Some counterexamples in dynamics of rational semigroups, Annales Academiae Scientiarum Fennicae Mathematica, 29 (2004), 357-366.


    R. Stankewitz and H. SumiDynamical properties and structure of Julia sets of postcritically bounded polynomial semigroups, to appear in Trans. Amer. Math. Soc., http://arxiv.org/abs/0708.3187.


    D. Steinsaltz, Random logistic maps and Lyapunov exponents, Indag. Mathem., N. S., 12 (2001), 557-584.


    H. Sumi, On dynamics of hyperbolic rational semigroups, J. Math. Kyoto Univ., 37 (1997), 717-733.


    H. Sumi, On Hausdorff dimension of Julia sets of hyperbolic rational semigroups, Kodai Mathematical Journal, 21 (1998), 10-28.doi: 10.2996/kmj/1138043831.


    H. Sumi, Skew product maps related to finitely generated rational semigroups, Nonlinearity, 13 (2000), 995-1019.doi: 10.1088/0951-7715/13/4/302.


    H. Sumi, Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products, Ergodic Theory Dynam. Systems, 21 (2001), 563-603.


    H. Sumi, Dimensions of Julia sets of expanding rational semigroups, Kodai Mathematical Journal, 28 (2005), 390-422; Also available from http://arxiv.org/abs/math/0405522.


    H. Sumi, Semi-hyperbolic fibered rational maps and rational semigroups, Ergodic Theory Dynam. Systems, 26 (2006), 893-922.doi: 10.1017/S0143385705000532.


    H. Sumi, Random dynamics of polynomials and devil's-staircase-like functions in the complex plane, Appl. Math. Comput., 187 (2007), 489-500.doi: 10.1016/j.amc.2006.08.149.


    H. Sumi, The space of postcritically bounded 2-generator polynomial semigroups with hyperbolicity, RIMS Kokyuroku, 1494 (2006), 62-86.


    H. Sumi, Dynamics of postcritically bounded polynomial semigroups I: connected components of the Julia sets, Discrete and Continuous Dynamical Systems Ser. A, 29 (2011), 1205-1244.doi: 10.3934/dcds.2011.29.1205.


    H. SumiDynamics of postcritically bounded polynomial semigroups II: Fiberwise dynamics and the Julia sets, preprint, http://arxiv.org/abs/1007.0613.


    H. Sumi, Dynamics of postcritically bounded polynomial semigroups III: Classification of semi-hyperbolic semigroups and random Julia sets which are Jordan curves but not quasicircles, Ergodic Theory Dynam. Systems, 30 (2010), 1869-1902.doi: 10.1017/S0143385709000923.


    H. Sumi, Dynamics of postcritically bounded polynomial semigroups, preprint 2007, http://arxiv.org/abs/math/0703591.


    H. Sumi, Interaction cohomology of forward or backward self-similar systems, Adv. Math., 222 (2009), 729-781.doi: 10.1016/j.aim.2009.04.007.


    H. Sumi, Random complex dynamics and semigroups of holomorphic maps, Proc. London Math. Soc., 102 (2011), 50-112.doi: 10.1112/plms/pdq013.


    H. Sumi, Cooperation principle, stability and bifurcation in random complex dynamics, preprint 2010, http://arxiv.org/abs/1008.3995.


    H. Sumi and M. Urbański, The equilibrium states for semigroups of rational maps, Monatsh. Math., 156 (2009), 371-390.doi: 10.1007/s00605-008-0016-8.


    H. Sumi and M. Urbański, Real analyticity of Hausdorff dimension for expanding rational semigroups, Ergodic Theory Dynam. Systems, 30 (2010), 601-633.doi: 10.1017/S0143385709000297.


    M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems, 14 (1994), 391-414.


    M. Urbański, Geometry and ergodic theory of conformal non-recurrent dynamics, Ergodic Theory Dynam. Systems, 17 (1997), 1449-1476.doi: 10.1017/S014338579708646X.


    P. Walters, "An Introduction to Ergodic Theory," Springer-Verlag, 1982.


    W. Zhou and and F. Ren, The Julia sets of the random iteration of rational functions, Chinese Sci. Bulletin, 37 (1992), 969-971.

  • 加载中

Article Metrics

HTML views() PDF downloads(77) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint