- Previous Article
- DCDS Home
- This Issue
-
Next Article
Limit theorems for optimal mass transportation and applications to networks
Erratum
1. | UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, United States |
References:
[1] |
E. DiBenedetto, U. Gianazza and V. Vespri, Harnack estimates for quasi-linear degenerate parabolic differential equations, Acta Math., 200 (2008), 181-209.
doi: 10.1007/s11511-008-0026-3. |
[2] |
Inwon C. Kim and Helen K. Lei, Degenerate diffusion with a drift potential: A viscosity solution approach, Dis. and Con. Dyn. Sys., 27 (2010), 767-786.
doi: 10.3934/dcds.2010.27.767. |
[3] |
J. L. Vazquez, "The Porous Medium Equation: Mathematical Theory," Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. |
show all references
References:
[1] |
E. DiBenedetto, U. Gianazza and V. Vespri, Harnack estimates for quasi-linear degenerate parabolic differential equations, Acta Math., 200 (2008), 181-209.
doi: 10.1007/s11511-008-0026-3. |
[2] |
Inwon C. Kim and Helen K. Lei, Degenerate diffusion with a drift potential: A viscosity solution approach, Dis. and Con. Dyn. Sys., 27 (2010), 767-786.
doi: 10.3934/dcds.2010.27.767. |
[3] |
J. L. Vazquez, "The Porous Medium Equation: Mathematical Theory," Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. |
[1] |
Inwon C. Kim, Helen K. Lei. Degenerate diffusion with a drift potential: A viscosity solutions approach. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 767-786. doi: 10.3934/dcds.2010.27.767 |
[2] |
Xinxin Jing, Yuanyuan Nie, Chunpeng Wang. Asymptotic behavior of solutions to coupled semilinear parabolic equations with general degenerate diffusion coefficients. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022107 |
[3] |
Ibrahim Ekren, Jianfeng Zhang. Pseudo-Markovian viscosity solutions of fully nonlinear degenerate PPDEs. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 6-. doi: 10.1186/s41546-016-0010-3 |
[4] |
Georges Chamoun, Moustafa Ibrahim, Mazen Saad, Raafat Talhouk. Asymptotic behavior of solutions of a nonlinear degenerate chemotaxis model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4165-4188. doi: 10.3934/dcdsb.2020092 |
[5] |
Pavel Krejčí, Songmu Zheng. Pointwise asymptotic convergence of solutions for a phase separation model. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 1-18. doi: 10.3934/dcds.2006.16.1 |
[6] |
Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617 |
[7] |
Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206 |
[8] |
Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265 |
[9] |
Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133 |
[10] |
Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11 |
[11] |
Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations and Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39 |
[12] |
Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic and Related Models, 2017, 10 (1) : 61-91. doi: 10.3934/krm.2017003 |
[13] |
Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661 |
[14] |
Florin Catrina, Zhi-Qiang Wang. Asymptotic uniqueness and exact symmetry of k-bump solutions for a class of degenerate elliptic problems. Conference Publications, 2001, 2001 (Special) : 80-87. doi: 10.3934/proc.2001.2001.80 |
[15] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[16] |
Pengchao Lai, Qi Li. Asymptotic behavior for the solutions to a bistable-bistable reaction diffusion equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3313-3323. doi: 10.3934/dcdsb.2021186 |
[17] |
Wenjun Wang, Lei Yao. Spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients and vacuum. Communications on Pure and Applied Analysis, 2010, 9 (2) : 459-481. doi: 10.3934/cpaa.2010.9.459 |
[18] |
Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152 |
[19] |
Hassan Khassehkhan, Messoud A. Efendiev, Hermann J. Eberl. A degenerate diffusion-reaction model of an amensalistic biofilm control system: Existence and simulation of solutions. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 371-388. doi: 10.3934/dcdsb.2009.12.371 |
[20] |
Shi-Liang Wu, Yu-Juan Sun, San-Yang Liu. Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 921-946. doi: 10.3934/dcds.2013.33.921 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]