May  2011, 30(2): 379-426. doi: 10.3934/dcds.2011.30.379

Attaching maps in the standard geodesics problem on $S^2$

1. 

Hill Center for the Mathematical Sciences, Rutgers University, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019

Received  March 2010 Revised  April 2010 Published  February 2011

Unstable manifolds of critical points at infinity in the variational problems relating to periodic orbits of Reeb vector-fields in Contact Form Geometry are viewed in this paper as part of the attaching maps along which these variational problems attach themselves to natural generalizations that they have. The specific periodic orbit problem for the Reeb vector-field $\xi_0$ of the standard contact structure/form of $S^3$ is studied; the extended variational problem is the closed geodesics problem on $S^2$. The attaching maps are studied for low-dimensional (at most $4$) cells. Some circle and ''loop" actions on the loop space of $S^3$, that are lifts (via Hopf-fibration map) of the standard $S^1$-action on the free loop space of $S^2$, are also defined. ''Conjugacy" relations relating these actions are established.
Citation: Abbas Bahri. Attaching maps in the standard geodesics problem on $S^2$. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 379-426. doi: 10.3934/dcds.2011.30.379
References:
[1]

A. Bahri, "Pseudo-Orbits of Contact Forms,", Pitman Research Notes in Mathematics Series No. 173, (1988).   Google Scholar

[2]

A. Bahri, "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE,", "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE,", 53 (2003).   Google Scholar

[3]

A. Bahri, Compactness,, Advanced Nonlinear Stud., 8 (2008), 465.   Google Scholar

[4]

A. Bahri, Topological remarks-critical points at infinity and string theory,, Advanced Nonlinear Studies, 9 (2009), 499.   Google Scholar

[5]

M. Chas and D. Sullivan, String topology,, preprint, 1 (1999).   Google Scholar

[6]

Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work,, Ann. Inst. Fourier, 42 (1992), 165.   Google Scholar

[7]

H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three,, Inventiones Mathematicae, 114 (1993), 515.  doi: doi:10.1007/BF01232679.  Google Scholar

[8]

W. Klingenberg, Closed geodesics on surfaces of genus 0,, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 6 (1979), 19.   Google Scholar

[9]

L. Menichi, String topology for spheres,, Comment. Math. Helv, 84 (2009), 135.  doi: doi:10.4171/CMH/155.  Google Scholar

[10]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure. Appl. Math., 31 (1978), 157.  doi: doi:10.1002/cpa.3160310203.  Google Scholar

[11]

D. Sullivan, Infinitesimal computations in topology,, I.H.E.S., 47 (1977), 269.   Google Scholar

[12]

C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture,, Geom. Topol., 11 (2007), 2117.  doi: doi:10.2140/gt.2007.11.2117.  Google Scholar

[13]

A. S. Zvarc, Homology of the space of closed curves,, Trudy Moskov, 9 (1960), 3.   Google Scholar

show all references

References:
[1]

A. Bahri, "Pseudo-Orbits of Contact Forms,", Pitman Research Notes in Mathematics Series No. 173, (1988).   Google Scholar

[2]

A. Bahri, "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE,", "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE,", 53 (2003).   Google Scholar

[3]

A. Bahri, Compactness,, Advanced Nonlinear Stud., 8 (2008), 465.   Google Scholar

[4]

A. Bahri, Topological remarks-critical points at infinity and string theory,, Advanced Nonlinear Studies, 9 (2009), 499.   Google Scholar

[5]

M. Chas and D. Sullivan, String topology,, preprint, 1 (1999).   Google Scholar

[6]

Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work,, Ann. Inst. Fourier, 42 (1992), 165.   Google Scholar

[7]

H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three,, Inventiones Mathematicae, 114 (1993), 515.  doi: doi:10.1007/BF01232679.  Google Scholar

[8]

W. Klingenberg, Closed geodesics on surfaces of genus 0,, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 6 (1979), 19.   Google Scholar

[9]

L. Menichi, String topology for spheres,, Comment. Math. Helv, 84 (2009), 135.  doi: doi:10.4171/CMH/155.  Google Scholar

[10]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure. Appl. Math., 31 (1978), 157.  doi: doi:10.1002/cpa.3160310203.  Google Scholar

[11]

D. Sullivan, Infinitesimal computations in topology,, I.H.E.S., 47 (1977), 269.   Google Scholar

[12]

C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture,, Geom. Topol., 11 (2007), 2117.  doi: doi:10.2140/gt.2007.11.2117.  Google Scholar

[13]

A. S. Zvarc, Homology of the space of closed curves,, Trudy Moskov, 9 (1960), 3.   Google Scholar

[1]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[2]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[3]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[4]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[5]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[6]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[7]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[8]

Zemer Kosloff, Terry Soo. The orbital equivalence of Bernoulli actions and their Sinai factors. Journal of Modern Dynamics, 2021, 17: 145-182. doi: 10.3934/jmd.2021005

[9]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[10]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[11]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[12]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[13]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[14]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[15]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[16]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[17]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[18]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[19]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[20]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]