-
Previous Article
An entropy based theory of the grain boundary character distribution
- DCDS Home
- This Issue
-
Next Article
Preface
Attaching maps in the standard geodesics problem on $S^2$
1. | Hill Center for the Mathematical Sciences, Rutgers University, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019 |
References:
[1] |
A. Bahri, "Pseudo-Orbits of Contact Forms," Pitman Research Notes in Mathematics Series No. 173, Longman Scientific and Technical, Longman, London, 1988 |
[2] |
A. Bahri, "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE," Birkhauser, Boston, 53, 2003. |
[3] |
A. Bahri, Compactness, Advanced Nonlinear Stud., 8 (2008), 465-568. |
[4] |
A. Bahri, Topological remarks-critical points at infinity and string theory, Advanced Nonlinear Studies, 9 (2009), 499-512. |
[5] |
M. Chas and D. Sullivan, String topology, preprint, Math. GT /9911159, 1 (1999). |
[6] |
Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier, Grenoble, 42 (1992), 165-192. |
[7] |
H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Inventiones Mathematicae, 114 (1993), 515-563.
doi: doi:10.1007/BF01232679. |
[8] |
W. Klingenberg, Closed geodesics on surfaces of genus 0, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Sr.4, 6 (1979), 19-38. |
[9] |
L. Menichi, String topology for spheres, Comment. Math. Helv, 84 (2009), 135-157.
doi: doi:10.4171/CMH/155. |
[10] |
P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure. Appl. Math., 31 (1978), 157-184.
doi: doi:10.1002/cpa.3160310203. |
[11] |
D. Sullivan, Infinitesimal computations in topology, I.H.E.S., 47 (1977), 269-331. |
[12] |
C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol., 11 (2007), 2117-2202.
doi: doi:10.2140/gt.2007.11.2117. |
[13] |
A. S. Zvarc, Homology of the space of closed curves, Trudy Moskov, Mat. Obsv., 9 (1960), 3-44. |
show all references
References:
[1] |
A. Bahri, "Pseudo-Orbits of Contact Forms," Pitman Research Notes in Mathematics Series No. 173, Longman Scientific and Technical, Longman, London, 1988 |
[2] |
A. Bahri, "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE," Birkhauser, Boston, 53, 2003. |
[3] |
A. Bahri, Compactness, Advanced Nonlinear Stud., 8 (2008), 465-568. |
[4] |
A. Bahri, Topological remarks-critical points at infinity and string theory, Advanced Nonlinear Studies, 9 (2009), 499-512. |
[5] |
M. Chas and D. Sullivan, String topology, preprint, Math. GT /9911159, 1 (1999). |
[6] |
Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier, Grenoble, 42 (1992), 165-192. |
[7] |
H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Inventiones Mathematicae, 114 (1993), 515-563.
doi: doi:10.1007/BF01232679. |
[8] |
W. Klingenberg, Closed geodesics on surfaces of genus 0, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Sr.4, 6 (1979), 19-38. |
[9] |
L. Menichi, String topology for spheres, Comment. Math. Helv, 84 (2009), 135-157.
doi: doi:10.4171/CMH/155. |
[10] |
P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure. Appl. Math., 31 (1978), 157-184.
doi: doi:10.1002/cpa.3160310203. |
[11] |
D. Sullivan, Infinitesimal computations in topology, I.H.E.S., 47 (1977), 269-331. |
[12] |
C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol., 11 (2007), 2117-2202.
doi: doi:10.2140/gt.2007.11.2117. |
[13] |
A. S. Zvarc, Homology of the space of closed curves, Trudy Moskov, Mat. Obsv., 9 (1960), 3-44. |
[1] |
Abbas Bahri. Recent results in contact form geometry. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 21-30. doi: 10.3934/dcds.2004.10.21 |
[2] |
Yu Li, Kok Lay Teo, Shuhua Zhang. A new feedback form of open-loop Stackelberg strategy in a general linear-quadratic differential game. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022105 |
[3] |
Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5037-5055. doi: 10.3934/dcds.2021067 |
[4] |
Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809 |
[5] |
K. H. Kim, F. W. Roush and J. B. Wagoner. Inert actions on periodic points. Electronic Research Announcements, 1997, 3: 55-62. |
[6] |
John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443 |
[7] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[8] |
Fengjie Geng, Junfang Zhao, Deming Zhu, Weipeng Zhang. Bifurcations of a nongeneric heteroclinic loop with nonhyperbolic equilibria. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 133-145. doi: 10.3934/dcdsb.2013.18.133 |
[9] |
Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 141-158. doi: 10.3934/dcds.1998.4.141 |
[10] |
Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597 |
[11] |
Alena Erchenko. Flexibility of Lyapunov exponents for expanding circle maps. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2325-2342. doi: 10.3934/dcds.2019098 |
[12] |
Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099 |
[13] |
Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615 |
[14] |
Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231 |
[15] |
Yulin Zhao, Siming Zhu. Higher order Melnikov function for a quartic hamiltonian with cuspidal loop. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 995-1018. doi: 10.3934/dcds.2002.8.995 |
[16] |
Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153 |
[17] |
Justine Yasappan, Ángela Jiménez-Casas, Mario Castro. Stabilizing interplay between thermodiffusion and viscoelasticity in a closed-loop thermosyphon. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3267-3299. doi: 10.3934/dcdsb.2015.20.3267 |
[18] |
Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95 |
[19] |
Michael Schönlein. Computation of open-loop inputs for uniformly ensemble controllable systems. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021046 |
[20] |
Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]