May  2011, 30(2): 379-426. doi: 10.3934/dcds.2011.30.379

Attaching maps in the standard geodesics problem on $S^2$

1. 

Hill Center for the Mathematical Sciences, Rutgers University, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019

Received  March 2010 Revised  April 2010 Published  February 2011

Unstable manifolds of critical points at infinity in the variational problems relating to periodic orbits of Reeb vector-fields in Contact Form Geometry are viewed in this paper as part of the attaching maps along which these variational problems attach themselves to natural generalizations that they have. The specific periodic orbit problem for the Reeb vector-field $\xi_0$ of the standard contact structure/form of $S^3$ is studied; the extended variational problem is the closed geodesics problem on $S^2$. The attaching maps are studied for low-dimensional (at most $4$) cells. Some circle and ''loop" actions on the loop space of $S^3$, that are lifts (via Hopf-fibration map) of the standard $S^1$-action on the free loop space of $S^2$, are also defined. ''Conjugacy" relations relating these actions are established.
Citation: Abbas Bahri. Attaching maps in the standard geodesics problem on $S^2$. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 379-426. doi: 10.3934/dcds.2011.30.379
References:
[1]

A. Bahri, "Pseudo-Orbits of Contact Forms," Pitman Research Notes in Mathematics Series No. 173, Longman Scientific and Technical, Longman, London, 1988

[2]

A. Bahri, "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE," Birkhauser, Boston, 53, 2003.

[3]

A. Bahri, Compactness, Advanced Nonlinear Stud., 8 (2008), 465-568.

[4]

A. Bahri, Topological remarks-critical points at infinity and string theory, Advanced Nonlinear Studies, 9 (2009), 499-512.

[5]

M. Chas and D. Sullivan, String topology, preprint, Math. GT /9911159, 1 (1999).

[6]

Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier, Grenoble, 42 (1992), 165-192.

[7]

H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Inventiones Mathematicae, 114 (1993), 515-563. doi: doi:10.1007/BF01232679.

[8]

W. Klingenberg, Closed geodesics on surfaces of genus 0, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Sr.4, 6 (1979), 19-38.

[9]

L. Menichi, String topology for spheres, Comment. Math. Helv, 84 (2009), 135-157. doi: doi:10.4171/CMH/155.

[10]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure. Appl. Math., 31 (1978), 157-184. doi: doi:10.1002/cpa.3160310203.

[11]

D. Sullivan, Infinitesimal computations in topology, I.H.E.S., 47 (1977), 269-331.

[12]

C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol., 11 (2007), 2117-2202. doi: doi:10.2140/gt.2007.11.2117.

[13]

A. S. Zvarc, Homology of the space of closed curves, Trudy Moskov, Mat. Obsv., 9 (1960), 3-44.

show all references

References:
[1]

A. Bahri, "Pseudo-Orbits of Contact Forms," Pitman Research Notes in Mathematics Series No. 173, Longman Scientific and Technical, Longman, London, 1988

[2]

A. Bahri, "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE," Birkhauser, Boston, 53, 2003.

[3]

A. Bahri, Compactness, Advanced Nonlinear Stud., 8 (2008), 465-568.

[4]

A. Bahri, Topological remarks-critical points at infinity and string theory, Advanced Nonlinear Studies, 9 (2009), 499-512.

[5]

M. Chas and D. Sullivan, String topology, preprint, Math. GT /9911159, 1 (1999).

[6]

Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier, Grenoble, 42 (1992), 165-192.

[7]

H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Inventiones Mathematicae, 114 (1993), 515-563. doi: doi:10.1007/BF01232679.

[8]

W. Klingenberg, Closed geodesics on surfaces of genus 0, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Sr.4, 6 (1979), 19-38.

[9]

L. Menichi, String topology for spheres, Comment. Math. Helv, 84 (2009), 135-157. doi: doi:10.4171/CMH/155.

[10]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure. Appl. Math., 31 (1978), 157-184. doi: doi:10.1002/cpa.3160310203.

[11]

D. Sullivan, Infinitesimal computations in topology, I.H.E.S., 47 (1977), 269-331.

[12]

C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol., 11 (2007), 2117-2202. doi: doi:10.2140/gt.2007.11.2117.

[13]

A. S. Zvarc, Homology of the space of closed curves, Trudy Moskov, Mat. Obsv., 9 (1960), 3-44.

[1]

Abbas Bahri. Recent results in contact form geometry. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 21-30. doi: 10.3934/dcds.2004.10.21

[2]

Yu Li, Kok Lay Teo, Shuhua Zhang. A new feedback form of open-loop Stackelberg strategy in a general linear-quadratic differential game. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022105

[3]

Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5037-5055. doi: 10.3934/dcds.2021067

[4]

Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809

[5]

K. H. Kim, F. W. Roush and J. B. Wagoner. Inert actions on periodic points. Electronic Research Announcements, 1997, 3: 55-62.

[6]

John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443

[7]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[8]

Fengjie Geng, Junfang Zhao, Deming Zhu, Weipeng Zhang. Bifurcations of a nongeneric heteroclinic loop with nonhyperbolic equilibria. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 133-145. doi: 10.3934/dcdsb.2013.18.133

[9]

Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 141-158. doi: 10.3934/dcds.1998.4.141

[10]

Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597

[11]

Alena Erchenko. Flexibility of Lyapunov exponents for expanding circle maps. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2325-2342. doi: 10.3934/dcds.2019098

[12]

Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099

[13]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[14]

Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231

[15]

Yulin Zhao, Siming Zhu. Higher order Melnikov function for a quartic hamiltonian with cuspidal loop. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 995-1018. doi: 10.3934/dcds.2002.8.995

[16]

Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153

[17]

Justine Yasappan, Ángela Jiménez-Casas, Mario Castro. Stabilizing interplay between thermodiffusion and viscoelasticity in a closed-loop thermosyphon. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3267-3299. doi: 10.3934/dcdsb.2015.20.3267

[18]

Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95

[19]

Michael Schönlein. Computation of open-loop inputs for uniformly ensemble controllable systems. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021046

[20]

Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]