-
Previous Article
An entropy based theory of the grain boundary character distribution
- DCDS Home
- This Issue
-
Next Article
Preface
Attaching maps in the standard geodesics problem on $S^2$
1. | Hill Center for the Mathematical Sciences, Rutgers University, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019 |
References:
[1] |
A. Bahri, "Pseudo-Orbits of Contact Forms,", Pitman Research Notes in Mathematics Series No. 173, (1988).
|
[2] |
A. Bahri, "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE,", "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE,", 53 (2003).
|
[3] |
A. Bahri, Compactness,, Advanced Nonlinear Stud., 8 (2008), 465.
|
[4] |
A. Bahri, Topological remarks-critical points at infinity and string theory,, Advanced Nonlinear Studies, 9 (2009), 499.
|
[5] |
M. Chas and D. Sullivan, String topology,, preprint, 1 (1999). Google Scholar |
[6] |
Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work,, Ann. Inst. Fourier, 42 (1992), 165.
|
[7] |
H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three,, Inventiones Mathematicae, 114 (1993), 515.
doi: doi:10.1007/BF01232679. |
[8] |
W. Klingenberg, Closed geodesics on surfaces of genus 0,, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 6 (1979), 19.
|
[9] |
L. Menichi, String topology for spheres,, Comment. Math. Helv, 84 (2009), 135.
doi: doi:10.4171/CMH/155. |
[10] |
P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure. Appl. Math., 31 (1978), 157.
doi: doi:10.1002/cpa.3160310203. |
[11] |
D. Sullivan, Infinitesimal computations in topology,, I.H.E.S., 47 (1977), 269.
|
[12] |
C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture,, Geom. Topol., 11 (2007), 2117.
doi: doi:10.2140/gt.2007.11.2117. |
[13] |
A. S. Zvarc, Homology of the space of closed curves,, Trudy Moskov, 9 (1960), 3. Google Scholar |
show all references
References:
[1] |
A. Bahri, "Pseudo-Orbits of Contact Forms,", Pitman Research Notes in Mathematics Series No. 173, (1988).
|
[2] |
A. Bahri, "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE,", "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE,", 53 (2003).
|
[3] |
A. Bahri, Compactness,, Advanced Nonlinear Stud., 8 (2008), 465.
|
[4] |
A. Bahri, Topological remarks-critical points at infinity and string theory,, Advanced Nonlinear Studies, 9 (2009), 499.
|
[5] |
M. Chas and D. Sullivan, String topology,, preprint, 1 (1999). Google Scholar |
[6] |
Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work,, Ann. Inst. Fourier, 42 (1992), 165.
|
[7] |
H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three,, Inventiones Mathematicae, 114 (1993), 515.
doi: doi:10.1007/BF01232679. |
[8] |
W. Klingenberg, Closed geodesics on surfaces of genus 0,, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 6 (1979), 19.
|
[9] |
L. Menichi, String topology for spheres,, Comment. Math. Helv, 84 (2009), 135.
doi: doi:10.4171/CMH/155. |
[10] |
P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure. Appl. Math., 31 (1978), 157.
doi: doi:10.1002/cpa.3160310203. |
[11] |
D. Sullivan, Infinitesimal computations in topology,, I.H.E.S., 47 (1977), 269.
|
[12] |
C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture,, Geom. Topol., 11 (2007), 2117.
doi: doi:10.2140/gt.2007.11.2117. |
[13] |
A. S. Zvarc, Homology of the space of closed curves,, Trudy Moskov, 9 (1960), 3. Google Scholar |
[1] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[2] |
Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021035 |
[3] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[4] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[5] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[6] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[7] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[8] |
Zemer Kosloff, Terry Soo. The orbital equivalence of Bernoulli actions and their Sinai factors. Journal of Modern Dynamics, 2021, 17: 145-182. doi: 10.3934/jmd.2021005 |
[9] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[10] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[11] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[12] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031 |
[13] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[14] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[15] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[16] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[17] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[18] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[19] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[20] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]