- Previous Article
- DCDS Home
- This Issue
-
Next Article
Decay estimation for positive solutions of a $\gamma$-Laplace equation
Regularity of optimal transport and cut locus: From nonsmooth analysis to geometry to smooth analysis
1. | Institut Henri Poincaré & Université Claude Bernard Lyon 1, 11 rue Pierre et Marie Curie 75230 Paris Cedex 05 |
References:
[1] |
M. Castelpietra and L. Rifford, Regularity properties of the distance function to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry, ESAIM Control Optim. Calc. Var., 16 (2010), 695-718.
doi: 10.1051/cocv/2009020. |
[2] |
D. Cordero-Erausquin, R. J. McCann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., 146 (2001), 219-257.
doi: 10.1007/s002220100160. |
[3] |
A. Figalli, Regularity of optimal transport maps [after Ma-Trudinger-Wang and Loeper]. Séminaire Bourbaki No. 1009, June 2009. |
[4] |
A. Figalli and L. Rifford, Continuity of optimal transport maps and convexity of injectivity domains on small deformations of $\mathbb S^n$, Comm. Pure Appl. Math., 62 (2009), 1670-1706.
doi: 10.1002/cpa.20293. |
[5] |
A. Figalli, L. Rifford and C. Villani, Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds, Preprint, 2010, available online at http://www.umpa.ens-lyon.fr/~cvillani. |
[6] |
A. Figalli, L. Rifford and C. Villani, On the Ma-Trudinger-Wang curvature on surfaces, To appear in "Calc. Var. Partial Differential Equations,'' available online at http://www.umpa.ens-lyon.fr/~cvillani. |
[7] |
A. Figalli, L. Rifford and C. Villani, Nearly round spheres look convex, preprint, 2009, will appear in Amer. Math. J., available online at http://www.umpa.ens-lyon.fr/~cvillani. |
[8] |
A. Figalli and C. Villani, Optimal transport and curvature, Notes for a CIME lecture course in Cetraro, June 2008, available online at http://www.umpa.ens-lyon.fr/~cvillani. |
[9] |
J. I. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus, Trans. Amer. Math. Soc., 353 (2001), 21-40.
doi: 10.1090/S0002-9947-00-02564-2. |
[10] |
Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations, Comm. Pure Appl. Math., 58 (2004), 85-146.
doi: 10.1002/cpa.20051. |
[11] |
G. Loeper and C. Villani, Regularity of optimal transport in curved geometry: The nonfocal case, in revision for Duke Math. J., available at http://www.umpa.ens-lyon.fr/~cvillani. |
[12] |
X.-N. Ma, N. S. Trudinger and X.-J. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., 177 (2005), 151-183.
doi: 10.1007/s00205-005-0362-9. |
[13] |
C. Villani, "Topics in Optimal Transportation,'' vol. 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003. |
[14] |
C. Villani, "Optimal Transport, Old and New,'' Vol. 338 of Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009. |
show all references
References:
[1] |
M. Castelpietra and L. Rifford, Regularity properties of the distance function to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry, ESAIM Control Optim. Calc. Var., 16 (2010), 695-718.
doi: 10.1051/cocv/2009020. |
[2] |
D. Cordero-Erausquin, R. J. McCann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., 146 (2001), 219-257.
doi: 10.1007/s002220100160. |
[3] |
A. Figalli, Regularity of optimal transport maps [after Ma-Trudinger-Wang and Loeper]. Séminaire Bourbaki No. 1009, June 2009. |
[4] |
A. Figalli and L. Rifford, Continuity of optimal transport maps and convexity of injectivity domains on small deformations of $\mathbb S^n$, Comm. Pure Appl. Math., 62 (2009), 1670-1706.
doi: 10.1002/cpa.20293. |
[5] |
A. Figalli, L. Rifford and C. Villani, Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds, Preprint, 2010, available online at http://www.umpa.ens-lyon.fr/~cvillani. |
[6] |
A. Figalli, L. Rifford and C. Villani, On the Ma-Trudinger-Wang curvature on surfaces, To appear in "Calc. Var. Partial Differential Equations,'' available online at http://www.umpa.ens-lyon.fr/~cvillani. |
[7] |
A. Figalli, L. Rifford and C. Villani, Nearly round spheres look convex, preprint, 2009, will appear in Amer. Math. J., available online at http://www.umpa.ens-lyon.fr/~cvillani. |
[8] |
A. Figalli and C. Villani, Optimal transport and curvature, Notes for a CIME lecture course in Cetraro, June 2008, available online at http://www.umpa.ens-lyon.fr/~cvillani. |
[9] |
J. I. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus, Trans. Amer. Math. Soc., 353 (2001), 21-40.
doi: 10.1090/S0002-9947-00-02564-2. |
[10] |
Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations, Comm. Pure Appl. Math., 58 (2004), 85-146.
doi: 10.1002/cpa.20051. |
[11] |
G. Loeper and C. Villani, Regularity of optimal transport in curved geometry: The nonfocal case, in revision for Duke Math. J., available at http://www.umpa.ens-lyon.fr/~cvillani. |
[12] |
X.-N. Ma, N. S. Trudinger and X.-J. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., 177 (2005), 151-183.
doi: 10.1007/s00205-005-0362-9. |
[13] |
C. Villani, "Topics in Optimal Transportation,'' vol. 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003. |
[14] |
C. Villani, "Optimal Transport, Old and New,'' Vol. 338 of Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009. |
[1] |
Paul Bracken. Connections of zero curvature and applications to nonlinear partial differential equations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1165-1179. doi: 10.3934/dcdss.2014.7.1165 |
[2] |
Kung-Ching Chang. In memory of professor Rouhuai Wang (1924-2001): A pioneering Chinese researcher in partial differential equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 571-575. doi: 10.3934/dcds.2016.36.571 |
[3] |
Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks and Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9 |
[4] |
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 |
[5] |
Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032 |
[6] |
Feliz Minhós. Periodic solutions for some fully nonlinear fourth order differential equations. Conference Publications, 2011, 2011 (Special) : 1068-1077. doi: 10.3934/proc.2011.2011.1068 |
[7] |
Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345 |
[8] |
Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014 |
[9] |
Thomas Lorenz. Partial differential inclusions of transport type with state constraints. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1309-1340. doi: 10.3934/dcdsb.2019018 |
[10] |
Dellacherie Stéphane. On the Wang Chang-Uhlenbeck equations. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 229-253. doi: 10.3934/dcdsb.2003.3.229 |
[11] |
Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351 |
[12] |
Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007 |
[13] |
Yannan Liu, Hongjie Ju. Non-collapsing for a fully nonlinear inverse curvature flow. Communications on Pure and Applied Analysis, 2017, 16 (3) : 945-952. doi: 10.3934/cpaa.2017045 |
[14] |
Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605 |
[15] |
Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure and Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735 |
[16] |
Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control and Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013 |
[17] |
Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control and Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020 |
[18] |
Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115 |
[19] |
Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299 |
[20] |
Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]