Citation: |
[1] |
M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," National Bureau of Standards Applied Mathematics Series, 55. |
[2] |
A. Böttcher and B. Silbermann, "Introduction to Large Truncated Toeplitz Matrices," Springer. 1998. |
[3] |
J. Bourgain, On growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potential, J. Anal. Math., 77 (1999), 315-348.doi: 10.1007/BF02791265. |
[4] |
M. Christ and A. Kiselev, Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials, Geom. Funct. Anal., 12 (2002), 1174-1234.doi: 10.1007/s00039-002-1174-9. |
[5] |
S. Denisov, Continuous analogs of polynomials orthogonal on the unit circle. Krein systems, Int. Math. Res. Surveys, Vol. 2006 (2006). |
[6] |
S. Denisov, An evolution equation as the WKB correction in long-time asymptotics of Schrödinger dynamics, Comm. Partial Differential Equations, 33 (2008), 307-319.doi: 10.1080/03605300701249655. |
[7] |
O. Jørsboe and L. Mejlbro, "The Carleson-Hunt Theorem on Fourier Series," Lecture Notes in Mathematics 911, Springer, 1982. |
[8] |
A. Kiselev, Stability of the absolutely continuous spectrum of the Schrödinger equation under slowly decaying perturbations and a.e. convergence of integral operators, Duke Math. J., 94 (1998), 619-646.doi: 10.1215/S0012-7094-98-09425-X. |
[9] |
G. Nenciu, Adiabatic theory: Stability of systems with increasing gaps, Ann. Inst. H. Poincare Phys. Theor., 67 (1997), 411-424. |
[10] |
B. Perthame, Mathematical tools for kinetic equations, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 205-244. |
[11] |
B. Simon, "Orthogonal Polynomials on the Unit Circle," Parts 1 and 2. American Mathematical Society Colloquium Publications, 54, American Mathematical Society, Providence, RI, 2005. |
[12] |
W.-M. Wang, Bounded Sobolev norms for linear Schrödinger equations under resonant perturbations, J. Funct. Anal., 254 (2008), 2926-2946.doi: 10.1016/j.jfa.2007.11.012. |