Advanced Search
Article Contents
Article Contents

Global bifurcation and stable two-phase separation for a phase field model in a disk

Abstract Related Papers Cited by
  • Let D:$=\{(x,y);\ x^2+y^2 < l^2\}\subset\R^2$. We study the shape of a local minimizer of the problem

    $E(u)=\int_{D}(\frac{|\nabla u|^2}{2}+\lambda W(u)) dx\ \ $subject to$ \ \ m=\frac{1}{|D|}\int_Dudx $

    and study the global structure of critical points. We show that for an arbitrary potential $W\in C^4$ every level set of every nonconstant local minimizer is a $C^1$-curve and it divides $D$ into exactly two simply connected subdomains. Next we consider the case $W(u)=(u^2-1)^2/4$ (Cahn-Hilliard equation). When $\lambda$ varies and $m$ is fixed, we show that this problem has an unbounded continuum of critical points. When $m$ varies and $\lambda$ is fixed, we show that this problem has a bounded continuum meeting at two different points on the trivial branch. Moreover, we show that in each case a bifurcating critical point is stable (a local minimizer) near the bifurcation point in a certain parameter range. The main technique is the nodal curve which relates the shape with the Morse index. We do not use a small parameter or the $\Gamma$-convergence technique.

    Mathematics Subject Classification: Primary: 35B32, 35B36; Secondary: 35J20, 35J61.


    \begin{equation} \\ \end{equation}
  • [1]

    J. Carr, M. Gurtin and M. Slemrod, Structured phase transitions on a finite interval, Arch. Rational Mech. Anal., 86 (1984), 317-351.doi: 10.1007/BF00280031.


    R. Casten and C. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations, 27 (1978), 266-273.doi: 10.1016/0022-0396(78)90033-5.


    P. Freitas and C. Rocha, Lyapunov functionals and stability for FitzHugh-Nagumo systems, J. Differential Equations, 169 (2001), 208-227.doi: 10.1006/jdeq.2000.3901.


    M. Gurtin and H. Matano, On the structure of equilibrium phase transitions within the gradient theory of fluids, Quart. Appl. Math., 46 (1988), 301-317.


    M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 351-370.


    B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and M. P. Owen, Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains, Comm. Math. Phys., 202 (1999), 629-649.doi: 10.1007/s002200050599.


    P. Hartman and A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math., 75 (1953), 449-476.doi: 10.2307/2372496.


    H. Kielhöfer, Pattern formation of the stationary Cahn-Hilliard model, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1219-1243.


    H. Kielhöfer, "Bifurcation Theory. An Introduction with Applications to PDEs," Applied Mathematical Sciences, 156, Springer-Verlag, New York, 2004, viii+346 pp.


    S. Kosugi, Y. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: proof by the complete elliptic integrals, Discrete Contin. Dyn. Syst., 19 (2007), 609-629.doi: 10.3934/dcds.2007.19.609.


    S. Luckhaus and L. Modica, The Gibbs-Thompson relation within the gradient theory of phase transitions, Arch. Rational Mech. Anal., 107 (1989), 71-83.doi: 10.1007/BF00251427.


    H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454.doi: 10.2977/prims/1195188180.


    H. Matano, Private communication (2005).


    B. McCartin, Eigenstructure of the equilateral triangle. II. The Neumann problem, Math. Probl. Eng., 8 (2002), 517-539.doi: 10.1080/1024123021000053664.


    Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball, J. Differential Equations, 229 (2006), 494-508.doi: 10.1016/j.jde.2006.03.015.


    Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball II, J. Differential Equations, 239 (2007), 61-71.doi: oi:10.1016/j.jde.2007.05.006.


    Y. Miyamoto, On the shape of the stable patterns for activator-inhibitor systems in two-dimensional domains, Quart. Appl. Math., 65 (2007), 357-374.


    Y. Miyamoto, Global branches of non-radially symmetric solutions to a semilinear Neumann problem in a disk, J. Funct. Anal., 256 (2009), 747-776.doi: 10.1016/j.jfa.2008.11.023.


    Y. Miyamoto, The "hot spots" conjecture for a certain class of planar convex domains, J. Math. Phys., 50 (2009), 103530, 7pp.


    L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142.doi: 10.1007/BF00251230.


    S. Maier-Paape and U. Miller, Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square, Discrete Contin. Dyn. Syst., 15 (2006), 1137-1153.doi: 10.3934/dcds.2006.15.1137.


    Y. Nishiura, Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit, Dynamics Reported, 3 (1994), 25-103.


    W. M. Ni, P. Poláčik and E. Yanagida, Monotonicity of stable solutions in shadow systems, Trans. Amer. Math. Soc., 353 (2001), 5057-5069.doi: 10.1090/S0002-9947-01-02880-X.


    P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., 101 (1988), 209-260.doi: 10.1007/BF00253122.


    T. Suzuki and S. Tasaki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., 71 (2009), 1329-1349.doi: 10.1016/j.na.2008.12.007.


    P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400.doi: 10.1007/s002050050081.


    E. Yanagida, Private communication (2006).

  • 加载中

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint