$iu_{t}+\frac{1}{2}$uxx$=i\mu\overline{u}^{\alpha}u^{\beta},\text{ }
x\in\mathbf{R},\text{ }t>0,$
$\ \ \ \ \ \ \ \ u(0,x) =u_{0}(x) ,\text{ }x\in\mathbf{R,} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1)$
where $\beta>\alpha\geq0,$ $\alpha+\beta\geq2,$ $\mu=-i^{\frac{\omega}{2} }t^{\frac{\theta}{2}-1},$ $\omega=\beta-\alpha-1,$ $\theta=\alpha+\beta-1.$ We prove that there exists a unique solution $u\in\mathbf{C}( [ 0,\infty) ;\mathbf{H}^{1}\cap\mathbf{H}^{0,1}) $ of the Cauchy problem (1). Also we find the large time asymptotics of solutions.
Citation: |
[1] |
H. Bateman and A. Erdelyi, "Tables of Integral Transforms," McGraw-Hill Book Co., N.Y., 1954. |
[2] |
Th. Cazenave, "Semilinear Schrödinger Equations," Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. |
[3] |
N. Hayashi and E. I. Kaikina, Local existence of solutions to the Cauchy problem for nonlinear Schrödinger equations, SUT J. Math., 34 (1998), 111-137. |
[4] |
N. Hayashi and E. I. Kaikina, "Nonlinear Theory of Pseudodifferential Equations on a Half-line," North-Holland Mathematics Studies, 194, Elsevier Science B.V., Amsterdam, 2004. |
[5] |
N. Hayashi and P. I. Naumkin, Large time behavior of solutions for derivative cubic nonlinear Schrödinger equations without a self-conjugate property, Funkcialaj Ekvacioj, 42 (1999), 311-324. |
[6] |
N. Hayashi and P. I. Naumkin, Asymptotics of small solutions to nonlinear Schrödinger equation with cubic nonlinearities, International Journal of Pure and Applied Mathematics, 3 (2002), 255-273. |
[7] |
N. Hayashi and P. I. Naumkin, Large time behavior for the cubic nonlinear Schrödinger equation, Canadian Journal of Mathematics, 54 (2002), 1065-1085.doi: 10.4153/CJM-2002-039-3. |
[8] |
N. Hayashi and P. I. Naumkin, On the asymptotics for cubic nonlinear Schrödinger equations, Complex Var. Theory Appl., 49 (2004), 339-373. |
[9] |
N. Hayashi and P. I. Naumkin, Nongauge invariant cubic nonlinear Schrödinger equations, Pac. J. Appl. Math., 1 (2008), 1-16. |
[10] |
N. Hayashi, P. I. Naumkin, A. Shimomura and S. Tonegawa, Modified Wave Operators for Nonlinear Schrödinger Equations in 1d or 2d, Electronic Journal of Differential Equations, (2004), 1-16. |
[11] |
N. Hayashi and T. Ozawa, Scattering theory in the weighted $\mathbfL^{2}(R^n)$spaces for some Schrödinger equations, Ann. I.H.P. (Phys. Théor.), 48 (1988), 17-37. |
[12] |
N. Hayashi and T. Ozawa, Modified wave operators for the derivative nonlinear Schrödinger equation, Math. Ann., 298 (1994), 557-576.doi: 10.1007/BF01459751. |
[13] |
T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys., 139 (1991), 479-493.doi: 10.1007/BF02101876. |
[14] |
J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., 38 (1985), 685-696.doi: 10.1002/cpa.3160380516. |
[15] |
S. Tonegawa, Global existence for a class of cubic nonlinear Schrödinger equations in one space dimension, Hokkaido Math. J., 30 (2001), 451-473. |