Citation: |
[1] |
C. Chicone and M. Jacobs, Bifurcation of limit cycles from quadratic isochrones, J. Differential Equations, 91 (1991), 268-326.doi: 10.1016/0022-0396(91)90142-V. |
[2] |
S. N. Chow, C. Li and Y. Yi, The cyclicity of period annulus of degenerate quadratic Hamiltonian system with elliptic segment loops, Ergodic Theory Dynam. Systems, 22 (2002), 349-374.doi: 10.1017/S0143385702000184. |
[3] |
F. Chen, C. Li, J. Llibre and Z. H. Zhang, A unified proof on the weak Hilbert 16th problem for $n=2$, J. Differential Equations, 221 (2006), 309-342.doi: 10.1016/j.jde.2005.01.009. |
[4] |
G. Chen, C. Li, C. Liu and J. Llibre, The cyclicity of period annuli of some classes of reversible quadratic systems, Discrete Contin. Dyn. Syst., 16 (2006), 157-177.doi: 10.3934/dcds.2006.16.157. |
[5] |
B. Coll, C. Li and R. Prohens, Quadratic perturbations of a class of quadratic reversible systems with two centers, Discrete Contin. Dyn. Syst., 24 (2009), 699-729.doi: 10.3934/dcds.2009.24.699. |
[6] |
F. Dumortier, C. Li and Z. Zhang, Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops, J. Differential Equations, 139 (1997), 146-193.doi: 10.1006/jdeq.1997.3285. |
[7] |
L. Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math., 143 (2001), 449-497.doi: 10.1007/PL00005798. |
[8] |
S. Gautier, L. Gavrilov and I. D. Iliev, Perturbations of quadratic center of genus one, Discrete Contin. Dyn. Syst., 25 (2009), 511-535.doi: 10.3934/dcds.2009.25.511. |
[9] |
E. Horozov and I. D. Iliev, On the number of limit cycles in perturbations of quadratic Hamiltonian system, Proc. London Math. Soc., 69 (1994), 198-224.doi: 10.1112/plms/s3-69.1.198. |
[10] |
I. D. Iliev, Perturbations of quadratic centers, Bull. Sci. Math., 122 (1998), 107-161.doi: 10.1016/S0007-4497(98)80080-8. |
[11] |
I. D. Iliev, C. Li and J. Yu, Bifurcation of limit cycles from quadratic non-Hamiltonian systems with two centers and two heteroclinic loops, Nonlinearity, 18 (2005), 305-330.doi: 10.1088/0951-7715/18/1/016. |
[12] |
C. Li and Z. Zhang, A criterion for determing the monotonicity of ratio of two Ablian integrals, J. Differential Equations, 124 (1996), 407-424.doi: 10.1006/jdeq.1996.0017. |
[13] |
C. Li and Z. H. Zhang, Remarks on weak 16th problem for $n=2$, Nonlinearity, 15 (2002), 1975-1992.doi: 10.1088/0951-7715/15/6/310. |
[14] |
L. Peng, Unfolding of a quadratic integrable system with a homoclinic loop, Acta Math. Sin.(Engl. ser.), 18 (2002), 737-754.doi: 10.1007/s10114-002-0196-4. |
[15] |
G. Swirszcz, Cyclicity of infinite contour around certain reversible quadratic center, J. Differential Equations, 265 (1999), 239-266. |
[16] |
J. Yu and C. Li, Bifurcation of a class of planar non-Hamiltonian integrable systems with one center and one homoclinic loop, J. Math. Anal. Appl., 269 (2002), 227-243.doi: 10.1016/S0022-247X(02)00018-5. |
[17] |
H. Zoladék, Quadratic systems with center and their perturbations, J. Differential Equations, 109 (1994), 223-273.doi: 10.1006/jdeq.1994.1049. |
[18] |
Z. Zhang, T. Ding et al, "Qualitative Theory of Differential Equations," Scientific press, Beijing, 1985. |
[19] |
Z. Zhang and C. Li, On the number of limit cycles of a class of quadratic Hamiltonian systems under quadratic perturbations, Adv. in Math. (China), 26 (1997), 445-460. |