$\i u_t + \Delta u + \beta (|u|^2) u = 0$
$\u(0,x) = u_0 (x),$
Citation: |
[1] |
S. Agmon, Spectral properties for Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1975), 151-218. |
[2] |
R. Beals, Characterization of pseudodifferential operators and applications, Duke Mathematical Journal, 44 (1977), 45-57.doi: 10.1215/S0012-7094-77-04402-7. |
[3] |
H. Berestycki and P. L. Lion, Nonlinear scalar field equations, I: Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.doi: 10.1007/BF00250555. |
[4] |
J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction," Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin-New York, 1976. |
[5] |
J. Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4), 25 (1998), 197-215. |
[6] |
T. Cazenave, "Semilinear Schrödinger Equations," Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. |
[7] |
M. Christ and A. Kiselev, Maximal functions associated with filtrations, Comm. Pure Appl. Math., 56 (2003), 1565-1607. |
[8] |
A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy, Comm. Pure Appl. Math., 56 (2003), 1565-1607.doi: 10.1002/cpa.10104. |
[9] |
S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 54 (2001), 409-425. |
[10] |
S. Cuccagna, D. Pelinovsky and V. Vougalter, Spectra of positive and negative energies in the linearized NLS problem, Comm. Pure Appl. Math., 58 (2005), 1-29.doi: 10.1002/cpa.20050. |
[11] |
B. Erdogan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or eigenvalue at zero energy in dimension three. II, J. Anal. Math., 99 (2006), 199-248.doi: 10.1007/BF02789446. |
[12] |
L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998. |
[13] |
L. C. Evans and M. Zworski, Lectures on semiclassical analysis, Unpublished Lecture Notes, 2006. Available from: http://math.berkeley.edu/ zworski/semiclassical.pdf. |
[14] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal., 94 (1990), 308-348.doi: 10.1016/0022-1236(90)90016-E. |
[15] |
P. Hislop and I. M. Sigal, "Introduction to Spectral Theory. With Applications to Schrödinger Operators," Applied Mathematical Sciences, 113, Springer-Verlag, New York, 1996. |
[16] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators I," Classics in Mathematics, Springer-Verlag, Berlin, 2003. |
[17] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators II," Classics in Mathematics, Springer-Verlag, Berlin, 2005. |
[18] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators III," Grundlehren der Mathematischen Wissenschaften, 274, Springer-Verlag, Berlin, 1994. |
[19] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators IV," Grundlehren der Mathematischen Wissenschaften, 275, Springer-Verlag, Berlin, 1994. |
[20] |
J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension, J. Amer. Math. Soc., 19 (2006), 815-920.doi: 10.1090/S0894-0347-06-00524-8. |
[21] |
J. L. Marzuola, A class of stable perturbations for a minimal mass soliton in three dimensional saturated nonlinear Schrödinger equations, SIAM J. of Math. Anal., 42 (2010), 1382-1403.doi: 10.1137/09075175X. |
[22] |
J. L. Marzuola and G. Simpson, Spectral analysis for matrix Hamiltonian operators, Nonlinearity, 24 (2010), 389-429.doi: 10.1088/0951-7715/24/2/003. |
[23] |
K. McLeod, Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in $\mathbb R^n$, II, Transactions of the American Mathematical Society, 339 (1993), 495-505.doi: 10.2307/2154282. |
[24] |
I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of $N$-soliton states of NLS, preprint, (2003), arXiv:math/0309114. |
[25] |
W. Schlag, Stable manifolds for an orbitally unstable NLS, Annals of Math., 169 (2009), 139-227.doi: 10.4007/annals.2009.169.139. |
[26] |
J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations, Communications in Mathematical Physics, 91 (1983), 313-327.doi: 10.1007/BF01208779. |
[27] |
J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations, Transactions of the American Mathematical Society, 290 (1985), 701-710.doi: 10.1090/S0002-9947-1985-0792821-7. |
[28] |
J. Shatah and W. Strauss, Instability of nonlinear bound states, Communications in Mathematical Physics, 100 (1985), 173-190.doi: 10.1007/BF01212446. |
[29] |
E. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals," Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993. |
[30] |
C. Sulem and P. Sulem, "The nonlinear Schrödinger Equation. Self-Focusing and Wave-Collapse," Applied Mathematical Sciences, 39, Springer-Verlag, New York, 1999. |
[31] |
M. Weinstein, Modulation stability of ground states of nonlinear Schrödinger equations, SIAM Journal of Mathematical Analysis, 16 (1985), 472-491.doi: 10.1137/0516034. |
[32] |
M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Communications on Pure and Applied Mathematics, 39 (1986), 51-68.doi: 10.1002/cpa.3160390103. |