November  2011, 30(4): 995-1035. doi: 10.3934/dcds.2011.30.995

Dispersive estimates using scattering theory for matrix Hamiltonian equations

1. 

Department of Mathematics, UNC-Chapel Hill, CB#3250, Phillips Hall, Chapel Hill, NC 27599-3250, United States

Received  February 2010 Revised  February 2011 Published  May 2011

We develop the techniques of [25] and [11] in order to derive dispersive estimates for a matrix Hamiltonian equation defined by linearizing about a minimal mass soliton solution of a saturated, focussing nonlinear Schrödinger equation

$\i u_t + \Delta u + \beta (|u|^2) u = 0$
$\u(0,x) = u_0 (x),$

in $\mathbb{R}^3$. These results have been seen before, though we present a new approach using scattering theory techniques. In further works, we will numerically and analytically study the existence of a minimal mass soliton, as well as the spectral assumptions made in the analysis presented here.
Citation: Jeremy L. Marzuola. Dispersive estimates using scattering theory for matrix Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 995-1035. doi: 10.3934/dcds.2011.30.995
References:
[1]

S. Agmon, Spectral properties for Schrödinger operators and scattering theory,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1975), 151.   Google Scholar

[2]

R. Beals, Characterization of pseudodifferential operators and applications,, Duke Mathematical Journal, 44 (1977), 45.  doi: 10.1215/S0012-7094-77-04402-7.  Google Scholar

[3]

H. Berestycki and P. L. Lion, Nonlinear scalar field equations, I: Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[4]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, 223 (1976).   Google Scholar

[5]

J. Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1998), 197.   Google Scholar

[6]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics, 10 (2003).   Google Scholar

[7]

M. Christ and A. Kiselev, Maximal functions associated with filtrations,, Comm. Pure Appl. Math., 56 (2003), 1565.   Google Scholar

[8]

A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy,, Comm. Pure Appl. Math., 56 (2003), 1565.  doi: 10.1002/cpa.10104.  Google Scholar

[9]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 54 (2001), 409.   Google Scholar

[10]

S. Cuccagna, D. Pelinovsky and V. Vougalter, Spectra of positive and negative energies in the linearized NLS problem,, Comm. Pure Appl. Math., 58 (2005), 1.  doi: 10.1002/cpa.20050.  Google Scholar

[11]

B. Erdogan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or eigenvalue at zero energy in dimension three. II,, J. Anal. Math., 99 (2006), 199.  doi: 10.1007/BF02789446.  Google Scholar

[12]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998).   Google Scholar

[13]

L. C. Evans and M. Zworski, Lectures on semiclassical analysis,, Unpublished Lecture Notes, (2006).   Google Scholar

[14]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II,, J. Funct. Anal., 94 (1990), 308.  doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[15]

P. Hislop and I. M. Sigal, "Introduction to Spectral Theory. With Applications to Schrödinger Operators,", Applied Mathematical Sciences, 113 (1996).   Google Scholar

[16]

L. Hörmander, "The Analysis of Linear Partial Differential Operators I,", Classics in Mathematics, (2003).   Google Scholar

[17]

L. Hörmander, "The Analysis of Linear Partial Differential Operators II,", Classics in Mathematics, (2005).   Google Scholar

[18]

L. Hörmander, "The Analysis of Linear Partial Differential Operators III,", Grundlehren der Mathematischen Wissenschaften, 274 (1994).   Google Scholar

[19]

L. Hörmander, "The Analysis of Linear Partial Differential Operators IV,", Grundlehren der Mathematischen Wissenschaften, 275 (1994).   Google Scholar

[20]

J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension,, J. Amer. Math. Soc., 19 (2006), 815.  doi: 10.1090/S0894-0347-06-00524-8.  Google Scholar

[21]

J. L. Marzuola, A class of stable perturbations for a minimal mass soliton in three dimensional saturated nonlinear Schrödinger equations,, SIAM J. of Math. Anal., 42 (2010), 1382.  doi: 10.1137/09075175X.  Google Scholar

[22]

J. L. Marzuola and G. Simpson, Spectral analysis for matrix Hamiltonian operators,, Nonlinearity, 24 (2010), 389.  doi: 10.1088/0951-7715/24/2/003.  Google Scholar

[23]

K. McLeod, Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in $\mathbb R^n$, II,, Transactions of the American Mathematical Society, 339 (1993), 495.  doi: 10.2307/2154282.  Google Scholar

[24]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of $N$-soliton states of NLS,, preprint, (2003).   Google Scholar

[25]

W. Schlag, Stable manifolds for an orbitally unstable NLS,, Annals of Math., 169 (2009), 139.  doi: 10.4007/annals.2009.169.139.  Google Scholar

[26]

J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations,, Communications in Mathematical Physics, 91 (1983), 313.  doi: 10.1007/BF01208779.  Google Scholar

[27]

J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations,, Transactions of the American Mathematical Society, 290 (1985), 701.  doi: 10.1090/S0002-9947-1985-0792821-7.  Google Scholar

[28]

J. Shatah and W. Strauss, Instability of nonlinear bound states,, Communications in Mathematical Physics, 100 (1985), 173.  doi: 10.1007/BF01212446.  Google Scholar

[29]

E. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton Mathematical Series, 43 (1993).   Google Scholar

[30]

C. Sulem and P. Sulem, "The nonlinear Schrödinger Equation. Self-Focusing and Wave-Collapse,", Applied Mathematical Sciences, 39 (1999).   Google Scholar

[31]

M. Weinstein, Modulation stability of ground states of nonlinear Schrödinger equations,, SIAM Journal of Mathematical Analysis, 16 (1985), 472.  doi: 10.1137/0516034.  Google Scholar

[32]

M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations,, Communications on Pure and Applied Mathematics, 39 (1986), 51.  doi: 10.1002/cpa.3160390103.  Google Scholar

show all references

References:
[1]

S. Agmon, Spectral properties for Schrödinger operators and scattering theory,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1975), 151.   Google Scholar

[2]

R. Beals, Characterization of pseudodifferential operators and applications,, Duke Mathematical Journal, 44 (1977), 45.  doi: 10.1215/S0012-7094-77-04402-7.  Google Scholar

[3]

H. Berestycki and P. L. Lion, Nonlinear scalar field equations, I: Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[4]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, 223 (1976).   Google Scholar

[5]

J. Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1998), 197.   Google Scholar

[6]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics, 10 (2003).   Google Scholar

[7]

M. Christ and A. Kiselev, Maximal functions associated with filtrations,, Comm. Pure Appl. Math., 56 (2003), 1565.   Google Scholar

[8]

A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy,, Comm. Pure Appl. Math., 56 (2003), 1565.  doi: 10.1002/cpa.10104.  Google Scholar

[9]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 54 (2001), 409.   Google Scholar

[10]

S. Cuccagna, D. Pelinovsky and V. Vougalter, Spectra of positive and negative energies in the linearized NLS problem,, Comm. Pure Appl. Math., 58 (2005), 1.  doi: 10.1002/cpa.20050.  Google Scholar

[11]

B. Erdogan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or eigenvalue at zero energy in dimension three. II,, J. Anal. Math., 99 (2006), 199.  doi: 10.1007/BF02789446.  Google Scholar

[12]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998).   Google Scholar

[13]

L. C. Evans and M. Zworski, Lectures on semiclassical analysis,, Unpublished Lecture Notes, (2006).   Google Scholar

[14]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II,, J. Funct. Anal., 94 (1990), 308.  doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[15]

P. Hislop and I. M. Sigal, "Introduction to Spectral Theory. With Applications to Schrödinger Operators,", Applied Mathematical Sciences, 113 (1996).   Google Scholar

[16]

L. Hörmander, "The Analysis of Linear Partial Differential Operators I,", Classics in Mathematics, (2003).   Google Scholar

[17]

L. Hörmander, "The Analysis of Linear Partial Differential Operators II,", Classics in Mathematics, (2005).   Google Scholar

[18]

L. Hörmander, "The Analysis of Linear Partial Differential Operators III,", Grundlehren der Mathematischen Wissenschaften, 274 (1994).   Google Scholar

[19]

L. Hörmander, "The Analysis of Linear Partial Differential Operators IV,", Grundlehren der Mathematischen Wissenschaften, 275 (1994).   Google Scholar

[20]

J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension,, J. Amer. Math. Soc., 19 (2006), 815.  doi: 10.1090/S0894-0347-06-00524-8.  Google Scholar

[21]

J. L. Marzuola, A class of stable perturbations for a minimal mass soliton in three dimensional saturated nonlinear Schrödinger equations,, SIAM J. of Math. Anal., 42 (2010), 1382.  doi: 10.1137/09075175X.  Google Scholar

[22]

J. L. Marzuola and G. Simpson, Spectral analysis for matrix Hamiltonian operators,, Nonlinearity, 24 (2010), 389.  doi: 10.1088/0951-7715/24/2/003.  Google Scholar

[23]

K. McLeod, Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in $\mathbb R^n$, II,, Transactions of the American Mathematical Society, 339 (1993), 495.  doi: 10.2307/2154282.  Google Scholar

[24]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of $N$-soliton states of NLS,, preprint, (2003).   Google Scholar

[25]

W. Schlag, Stable manifolds for an orbitally unstable NLS,, Annals of Math., 169 (2009), 139.  doi: 10.4007/annals.2009.169.139.  Google Scholar

[26]

J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations,, Communications in Mathematical Physics, 91 (1983), 313.  doi: 10.1007/BF01208779.  Google Scholar

[27]

J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations,, Transactions of the American Mathematical Society, 290 (1985), 701.  doi: 10.1090/S0002-9947-1985-0792821-7.  Google Scholar

[28]

J. Shatah and W. Strauss, Instability of nonlinear bound states,, Communications in Mathematical Physics, 100 (1985), 173.  doi: 10.1007/BF01212446.  Google Scholar

[29]

E. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton Mathematical Series, 43 (1993).   Google Scholar

[30]

C. Sulem and P. Sulem, "The nonlinear Schrödinger Equation. Self-Focusing and Wave-Collapse,", Applied Mathematical Sciences, 39 (1999).   Google Scholar

[31]

M. Weinstein, Modulation stability of ground states of nonlinear Schrödinger equations,, SIAM Journal of Mathematical Analysis, 16 (1985), 472.  doi: 10.1137/0516034.  Google Scholar

[32]

M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations,, Communications on Pure and Applied Mathematics, 39 (1986), 51.  doi: 10.1002/cpa.3160390103.  Google Scholar

[1]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[2]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[3]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[4]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[5]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[6]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[7]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]