Citation: |
[1] |
L.-E. Andersson, A global existence result for a quasistatic contact problem with friction, Advances in Mathematical Sciences ans Applications, 5 (1995), 249-286. |
[2] |
B. Awbi, El. H. Essoufi and M. Sofonea, A viscoelastic contact problem with normal damped response and friction, Annales Polonici Mathematici, 75 (2000), 233-246. |
[3] |
V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces," Translated from the Romanian, Editura Academiei Republicii Socialiste România, Bucharest, Noordhoff International Publishing, Leiden, 1976. |
[4] |
N. Bourbaki, "Éléments de Mathématiques," Première Partie, Livre IV, Fonctions d'une variable réelle, Hermann, 1961. |
[5] |
H. Brézis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble), 18 (1968), 115-175.doi: 10.5802/aif.280. |
[6] |
H. Brézis, Problèmes unilatéraux, J. Math. Pures et Appli, 51 (1972), 1-168. |
[7] |
F. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, in "Nonlinear Functional Analysis" (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968), 1-308, Amer. Math. Soc., Providence, RI, 1976. |
[8] |
O. Chau, R. Oujja and M. Rochdi, A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity, Discrete and Continuous Dynamical Systems, Series S, Volume 1 (2008), 61-70. |
[9] |
O. Chau, D. Motreanu and M. Sofonea, Quasistatic frictional problems for elastic and viscoelastic materials, Applications of Mathematics, 47 (2002), 341-360.doi: 10.1023/A:1021753722771. |
[10] |
O. Chau and M. Rochdi, On a dynamic bilateral contact problem with friction for viscoelastic materials, Int. J. of Appli. Math. and Mech, 2 (2006), 41-52. |
[11] |
P. G. Ciarlet, "Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity," Studies in Mathematics and its Applications, 20, North-Holland Publishing Co., Amsterdam, 1988. |
[12] |
M. Cocu, E. Pratt and M. Raous, Formulation and approximation of quasistatic frictional contact, Int. J. Engn. Sci, 34 (1996), 783-798.doi: 10.1016/0020-7225(95)00121-2. |
[13] |
G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics," Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin-New York, 1976. |
[14] |
C. Eck and J. Jarušek, Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions, Mathematical models and Methods in Applied Sciences, 9 (1999), 11-34.doi: 10.1142/S0218202599000038. |
[15] |
H. Fraysse and J. M. Arnaudiès, "Cours de Mathématiques," Dunod, 1999. |
[16] |
D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, "Variational and Hemivariational Inequalities: Theory, Methods and Applications, Volume I: Unilateral Analysis and Unilateral Mechanics," Nonconvex Optimization and its Applications, 69, Kluwer Academic Publishers, Boston, MA, 2003. |
[17] |
I. Hlaváček, J. Haslinger, J. Necăs and J. Lovíšek, "Solution of Variational Inequalities in Mechanics," Applied Mathematical Sciences, 66, Springer-Verlag, New York, 1988. |
[18] |
W. Han and B. D. Reddy, "Plasticity. Mathematical Theory and Numerical Analysis," Interdisciplinary Applied Mathematics, 9, Springer-Verlag, New York, 1999. |
[19] |
J. Jarušek, Dynamic contact problems with given friction for viscoelastic bodies, Czechoslovak Mathematical Journal, 46 (1996), 475-487. |
[20] |
N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods," SIAM Studies in Applied Mathematics, 8, SIAM, Philadelphia, PA, 1988. |
[21] |
J. L. Lions and G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493-519.doi: 10.1002/cpa.3160200302. |
[22] |
J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlin. Anal., 11 (1987), 407-428.doi: 10.1016/0362-546X(87)90055-1. |
[23] |
J. Nečas and I. Hlavaček, "Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction," Elsevier, Amsterdam, 1981. |
[24] |
P. D. Panagiotopoulos, "Inequality Problems in Meechanical and Applications. Convex and Nonconvex Energy Functions," Birkhäuser Boston, Inc., Boston, MA, 1985. |
[25] |
P. D. Panagiotopoulos, "Hemivariational Inequalities, Applications in Mechanics and Engineering," Springer-Verlag, Berlin, 1993. |
[26] |
M. Raous, M. Jean and J. J. Moreau, eds., "Contact Mechanics," Plenum Press, New York, 1995. |
[27] |
M. Rochdi, M. Shillor and M. Sofonea, Quasistatic viscoelastic contact with normal compliance and friction, Journal of Elasticity, 51 (1998), 105-126.doi: 10.1023/A:1007413119583. |
[28] |
E. Zeidler, "Nonlinear Functional Analysis and its Applications," Springer-Verlag, 1997. |