Advanced Search
Article Contents
Article Contents

Planar quasilinear elliptic equations with right-hand side in $L(\log L)^{\delta}$

Abstract Related Papers Cited by
  • For $\Omega\subset \mathbb{R}^2$ a bounded open set with $\mathcal{C}^1$ boundary, we study the regularity of the variational solution $v\in W_0^{1,2}(\Omega)$ to the quasilinear elliptic equation of Leray-Lions \begin{equation*} - \,\textrm{div}\, A(x, \nabla v) = f \end{equation*} when $f$ belongs to the Zygmund space $L(\log L)^{\delta}(\Omega)$, $\frac{1}{2} \leq \delta \leq 1$. We prove that $|\nabla v|$ belongs to the Lorentz space $L^{2, 1/\delta}(\Omega)$.
    Mathematics Subject Classification: Primary: 35B65; Secondary: 46E30.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Alberico and V. Ferone, Regularity properties of solutions of elliptic equations in $\mathbbR^2$ in limit cases, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 6 (1995), 237-250.


    C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, Dissertationes Math. (Rozprawy Mat.), 175 (1980), 1-67.


    C. Bennett and R. Sharpley, "Interpolation of Operators," Pure and Applied Mathematics, 129, Academic Press, Inc., Boston, MA, 1988.


    L. Boccardo, Quelques problemes de Dirichlet avec donneées dans de grand espaces de Sobolev, (French) [Some Dirichlet problems with data in large Sobolev spaces], C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 1269-1272.


    C. Capone and A. Fiorenza, On small Lebesgue spaces, J. Funct. Spaces Appl., 3 (2005), 73-89.


    M. Carozza and C. Sbordone, The distance to $L^\infty$ in same function spaces and applications, Differential Integral Equations, 10 (1997), 599-607.


    A. Cianchi, Continuity properties of functions from Orlicz-Sobolev spaces and embedding theorems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996), 575-608.


    M. Cwikel, The dual of Weak $L^p$, Ann. Inst. Fourier (Grenoble), 25 (1975), 81-126.doi: 10.5802/aif.556.


    G. di Blasio, F. Feo and M. R. Posteraro, Existence results for nonlinear elliptic equations related to Gauss measure in a limit case, Commun. Pure Appl. Anal., 7 (2008), 1497-1506.doi: 10.3934/cpaa.2008.7.1497.


    G. Di Fratta and A. Fiorenza, A direct approach to the duality of grand and small Lebesgue spaces, Nonlinear Anal., 70 (2009), 2582-2592.doi: 10.1016/j.na.2008.03.044.


    D. E. Edmunds and H. Triebel, "Function Spaces, Entropy Numbers, Differential Operators," Cambridge Tracts in Mathematics, 120, Cambridge University Press, Cambridge, 1996.


    D. E. Edmunds and H. Triebel, Logarithmic Sobolev spaces and their applications to spectral theory, Proc. London Math. Soc. (3), 71 (1995), 333-371.doi: 10.1112/plms/s3-71.2.333.


    D. E. Edmunds, P. Gurka and B. Opic, Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces, Indiana Univ. Math. J., 44 (1995), 19-43.doi: 10.1512/iumj.1995.44.1977.


    A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math., 51 (2000), 131-148.


    A. Fiorenza and G. E. Karadzhov, Grand and small Lebesgue spaces and their analogs, Z. Anal. Anwendungen, 23 (2004), 657-681.doi: 10.4171/ZAA/1215.


    A. Fiorenza and C. Sbordone, Existence and uniqueness results for solutions of nonlinear equations with right hand side in $L^1$, Studia Math., 127 (1998), 223-231.


    N. Fusco, P.-L. Lions and C. Sbordone, Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc., 124 (1996), 561-565.doi: 10.1090/S0002-9939-96-03136-X.


    L. Greco, A remark on the equality det $Df$= Det $Df$, Differential Integral Equations, 6 (1993), 1089-1100.


    S. Hencl, Sharp generalized Trudinger inequalities via truncation, J. Math. Anal. Appl., 322 (2006), 336-348.doi: 10.1016/j.jmaa.2005.07.041.


    T. Iwaniec and J. Onninen, Continuity estimates for $n$-harmonic equations, Indiana Univ. Math. J., 56 (2007), 805-824.doi: 10.1512/iumj.2007.56.2987.


    T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal., 119 (1992), 129-143.doi: 10.1007/BF00375119.


    T. Iwaniec and C. Sbordone, Quasiharmonic fields, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 519-572.


    T. Iwaniec and A. Verde, On the operator $\mathcalL(f)=f$ $\log \|f\|$, J. Funct. Anal., 169 (1999), 391-420.doi: 10.1006/jfan.1999.3443.


    A. Passarelli di Napoli and C. Sbordone, Elliptic equations with right-hand side in $L(\log L)^{\alpha}$, Rend. Accad. Sci. Fis. Mat. Napoli (4), 62 (1995), 301-314.


    G. Stampacchia, Some limit cases of $L^p$-estimates for solutions of second order elliptic equations, Comm. Pure Appl. Math., 16 (1963), 505-510.doi: 10.1002/cpa.3160160409.


    E. M. Stein, Editor's note: The differentiability of functions in $\mathbbR^n$, Ann. of Math. (2), 113 (1981), 383-385.


    N. S. Trudinger, On imbeddings into Orlicz spaces and applications, J. Math. Mech., 17 (1967), 473-483.

  • 加载中

Article Metrics

HTML views() PDF downloads(136) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint