\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Planar quasilinear elliptic equations with right-hand side in $L(\log L)^{\delta}$

Abstract Related Papers Cited by
  • For $\Omega\subset \mathbb{R}^2$ a bounded open set with $\mathcal{C}^1$ boundary, we study the regularity of the variational solution $v\in W_0^{1,2}(\Omega)$ to the quasilinear elliptic equation of Leray-Lions \begin{equation*} - \,\textrm{div}\, A(x, \nabla v) = f \end{equation*} when $f$ belongs to the Zygmund space $L(\log L)^{\delta}(\Omega)$, $\frac{1}{2} \leq \delta \leq 1$. We prove that $|\nabla v|$ belongs to the Lorentz space $L^{2, 1/\delta}(\Omega)$.
    Mathematics Subject Classification: Primary: 35B65; Secondary: 46E30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Alberico and V. Ferone, Regularity properties of solutions of elliptic equations in $\mathbbR^2$ in limit cases, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 6 (1995), 237-250.

    [2]

    C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, Dissertationes Math. (Rozprawy Mat.), 175 (1980), 1-67.

    [3]

    C. Bennett and R. Sharpley, "Interpolation of Operators," Pure and Applied Mathematics, 129, Academic Press, Inc., Boston, MA, 1988.

    [4]

    L. Boccardo, Quelques problemes de Dirichlet avec donneées dans de grand espaces de Sobolev, (French) [Some Dirichlet problems with data in large Sobolev spaces], C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 1269-1272.

    [5]

    C. Capone and A. Fiorenza, On small Lebesgue spaces, J. Funct. Spaces Appl., 3 (2005), 73-89.

    [6]

    M. Carozza and C. Sbordone, The distance to $L^\infty$ in same function spaces and applications, Differential Integral Equations, 10 (1997), 599-607.

    [7]

    A. Cianchi, Continuity properties of functions from Orlicz-Sobolev spaces and embedding theorems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996), 575-608.

    [8]

    M. Cwikel, The dual of Weak $L^p$, Ann. Inst. Fourier (Grenoble), 25 (1975), 81-126.doi: 10.5802/aif.556.

    [9]

    G. di Blasio, F. Feo and M. R. Posteraro, Existence results for nonlinear elliptic equations related to Gauss measure in a limit case, Commun. Pure Appl. Anal., 7 (2008), 1497-1506.doi: 10.3934/cpaa.2008.7.1497.

    [10]

    G. Di Fratta and A. Fiorenza, A direct approach to the duality of grand and small Lebesgue spaces, Nonlinear Anal., 70 (2009), 2582-2592.doi: 10.1016/j.na.2008.03.044.

    [11]

    D. E. Edmunds and H. Triebel, "Function Spaces, Entropy Numbers, Differential Operators," Cambridge Tracts in Mathematics, 120, Cambridge University Press, Cambridge, 1996.

    [12]

    D. E. Edmunds and H. Triebel, Logarithmic Sobolev spaces and their applications to spectral theory, Proc. London Math. Soc. (3), 71 (1995), 333-371.doi: 10.1112/plms/s3-71.2.333.

    [13]

    D. E. Edmunds, P. Gurka and B. Opic, Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces, Indiana Univ. Math. J., 44 (1995), 19-43.doi: 10.1512/iumj.1995.44.1977.

    [14]

    A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math., 51 (2000), 131-148.

    [15]

    A. Fiorenza and G. E. Karadzhov, Grand and small Lebesgue spaces and their analogs, Z. Anal. Anwendungen, 23 (2004), 657-681.doi: 10.4171/ZAA/1215.

    [16]

    A. Fiorenza and C. Sbordone, Existence and uniqueness results for solutions of nonlinear equations with right hand side in $L^1$, Studia Math., 127 (1998), 223-231.

    [17]

    N. Fusco, P.-L. Lions and C. Sbordone, Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc., 124 (1996), 561-565.doi: 10.1090/S0002-9939-96-03136-X.

    [18]

    L. Greco, A remark on the equality det $Df$= Det $Df$, Differential Integral Equations, 6 (1993), 1089-1100.

    [19]

    S. Hencl, Sharp generalized Trudinger inequalities via truncation, J. Math. Anal. Appl., 322 (2006), 336-348.doi: 10.1016/j.jmaa.2005.07.041.

    [20]

    T. Iwaniec and J. Onninen, Continuity estimates for $n$-harmonic equations, Indiana Univ. Math. J., 56 (2007), 805-824.doi: 10.1512/iumj.2007.56.2987.

    [21]

    T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal., 119 (1992), 129-143.doi: 10.1007/BF00375119.

    [22]

    T. Iwaniec and C. Sbordone, Quasiharmonic fields, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 519-572.

    [23]

    T. Iwaniec and A. Verde, On the operator $\mathcalL(f)=f$ $\log \|f\|$, J. Funct. Anal., 169 (1999), 391-420.doi: 10.1006/jfan.1999.3443.

    [24]

    A. Passarelli di Napoli and C. Sbordone, Elliptic equations with right-hand side in $L(\log L)^{\alpha}$, Rend. Accad. Sci. Fis. Mat. Napoli (4), 62 (1995), 301-314.

    [25]

    G. Stampacchia, Some limit cases of $L^p$-estimates for solutions of second order elliptic equations, Comm. Pure Appl. Math., 16 (1963), 505-510.doi: 10.1002/cpa.3160160409.

    [26]

    E. M. Stein, Editor's note: The differentiability of functions in $\mathbbR^n$, Ann. of Math. (2), 113 (1981), 383-385.

    [27]

    N. S. Trudinger, On imbeddings into Orlicz spaces and applications, J. Math. Mech., 17 (1967), 473-483.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(136) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return