Citation: |
[1] |
L. Ambrosio, L. Faina and R. March, Variational approximation of a second order free discontinuity problem in computer vision, SIAM J. Math. Anal., 32 (2001), 1171-1197.doi: 10.1137/S0036141000368326. |
[2] |
L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variations and Free Discontinuity Problems," Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. |
[3] |
L. Ambrosio and V. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via $\Gamma$-convergence, Comm. Pure Appl. Math., 43 (1990), 999-1036.doi: 10.1002/cpa.3160430805. |
[4] |
A. Blake and A. Zisserman, "Visual Reconstruction," The MIT Press Series in Artificial Intelligence, MIT Press, Cambridge, MA, 1987. |
[5] |
T. Boccellari and F. Tomarelli, About well-posedness of optimal segmentation for Blake & Zisserman functional, Istituto Lombardo (Rend. Cl. Sci. Mat. Nat.), 142 (2008), 237-265. |
[6] |
T. Boccellari and F. Tomarelli, Generic uniqueness of minimizer for Blake & Zisserman functional, Dip. Matematica, Politecnico di Milano, QDD 66 (2010), 1-73. Available from: http://www1.mate.polimi.it/biblioteca/qddview.php?id=1390&L=i. |
[7] |
M. Carriero, A. Farina and I. Sgura, Image segmentation in the framework of free discontinuity problems, in "Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi" (ed. D. Pallara), Quad. Mat., 14, Dept. Math., Seconda Univ. Napoli, Caserta, (2004), 85-133. |
[8] |
M. Carriero and A. Leaci, Existence theorem for a Dirichlet problem with free dicontinuity set, Nonlinear Analysis, 15 (1990), 661-677.doi: 10.1016/0362-546X(90)90006-3. |
[9] |
M. Carriero, A. Leaci and F. Tomarelli, Free gradient discontinuities, in "Calculus of Variations, Homogeneization and Continuum Mechanics," (eds. G. Buttazzo, G. Bouchitte and P. Suquet) (Marseille, 1993), 131-147, Ser. Adv. Math Appl. Sci., 18, World Sci. Publishing, River Edge, NJ, 1994. |
[10] |
M. Carriero, A. Leaci and F. Tomarelli, A second order model in image segmentation: Blake & Zisserman functional, in "Variational Methods for Discontinuous Structures," (eds. R. Serapioni and F. Tomarelli) (Como, 1994), 57-72, Progr. Nonlinear Differential Equations Appl., 25, Birkhäuser, Basel, 1996. |
[11] |
M. Carriero, A. Leaci and F. Tomarelli, Strong minimizers of Blake & Zisserman functional, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 257-285. |
[12] |
M. Carriero, A. Leaci and F. Tomarelli, Density estimates and further properties of Blake & Zisserman functional, in "From Convexity to Nonconvexity" (eds. R. Gilbert and P. Pardalos), 381-392, Nonconvex Optim. Appl., 55, Kluwer Acad. Publ., Dordrecht, 2001. |
[13] |
M. Carriero, A. Leaci and F. Tomarelli, Necessary conditions for extremals of Blake & Zisserman functional, C. R. Math. Acad. Sci. Paris, 334 (2002), 343-348. |
[14] |
M. Carriero, A. Leaci and F. Tomarelli, Local minimizers for a free gradient discontinuity problem in image segmentation, in "Variational Methods for Discontinuous Structures" (eds. G. Dal Maso and F. Tomarelli), 67-80, Progr. Nonlinear Differential Equations Appl., 51, Birkhäuser, Basel, 2002. |
[15] |
M. Carriero, A. Leaci and F. Tomarelli, Calculus of variations and image segmentation, J. of Physiology, Paris, 97 (2003), 343-353.doi: 10.1016/j.jphysparis.2003.09.008. |
[16] |
M. Carriero, A. Leaci and F. Tomarelli, Second order variational problems with free discontinuity and free gradient discontinuity, in "Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi" (ed. D. Pallara), 135-186, Quad. Mat., 14, Dept. Math., Seconda Univ. Napoli, Caserta, 2004. |
[17] |
M. Carriero, A. Leaci and F. Tomarelli, Euler equations for Blake & Zisserman functional, Calc. Var. Partial Differential Equations, 32 (2008), 81-110. |
[18] |
M. Carriero, A. Leaci and F. Tomarelli, A Dirichlet problem with free gradient discontinuity, Adv. Math. Sci. Appl., 20 (2010), 107-141. |
[19] |
M. Carriero, A. Leaci and F. Tomarelli, A candidate local minimizer of Blake & Zisserman functional, J. Math. Pures Appl., 96 (2011), 58-87.doi: 10.1016/j.matpur.2011.01.005. |
[20] |
M. Carriero, A. Leaci and F. Tomarelli, Variational approach to image segmentation, Pure Math. Appl. (Pu.M.A.), 20 (2009), 141-156. |
[21] |
M. Carriero, A. Leaci and F. Tomarelli, About Poincaré inequalities for functions lacking summability, Note Mat., 31 (2011), 67-84. |
[22] |
M. Carriero, A. Leaci and F. Tomarelli, Free gradient discontinuity and image inpaintig, Proc. Steklov Inst. Math., to appear, 2011. |
[23] |
V. Caselles, G. Haro, G. Sapiro and J. Verdera, On geometric variational models for inpainting surface holes, Computer Vision and Image Understanding, 111 (2008), 351-373.doi: 10.1016/j.cviu.2008.01.002. |
[24] |
T. Chan, S. Esedoglu, F. Park and A. Yip, Total variation image restoration: Overview and recent developments, in "Handbook of Mathematical Models in Computer Vision" (eds. N. Paragios, Y. Chen and O. Faugeras), 17-31, Springer, New York, 2006.doi: 10.1007/0-387-28831-7_2. |
[25] |
E. De Giorgi, Free discontinuity problems in calculus of variations, in "Frontiers in Pure and Applied Mathematics" (ed. R. Dautray), 55-62, North-Holland, Amsterdam, 1991. |
[26] |
E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del Calcolo delle Variazioni (Italian) [New functionals in the calculus of variations], Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 82 (1988), 199-210. |
[27] |
R. J. Duffin, Continuation of biharmonic functions by reflection, Duke Math. J., 22 (1955), 313-324.doi: 10.1215/S0012-7094-55-02233-X. |
[28] |
S. Esedoglu and J. Shen, Digital inpainting based on the Mumford-Shah-Euler image model, European J. Appl. Math., 13 (2002), 353-370.doi: 10.1017/S0956792502004904. |
[29] |
H. Federer, "Geometric Measure Theory," Die Grundlehren der Mathematischen Wissenschaften, 153, Springer-Verlag New York Inc., New York, 1969. |
[30] |
M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems," Ann. Math. Stud., 105, Princeton U. P., Princeton, NJ, 1983. |
[31] |
F. A. Lops, F. Maddalena and S. Solimini, Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 639-673. |
[32] |
R. March, Visual reconstruction with discontinuities using variational methods, Image and Vision Computing, 10 (1992), 30-38.doi: 10.1016/0262-8856(92)90081-D. |
[33] |
J.-M. Morel and S. Solimini, "Variational Methods in Image Segmentation. With Seven Image Processing Experiments," Progr. Nonlinear Differential Equations Appl., 14, Birkhäuser Boston, Inc., Boston, MA, 1995. |
[34] |
D. Mumford and J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), 577-685.doi: 10.1002/cpa.3160420503. |
[35] |
J. Verdera, V. Caselles, M. Bertalmio and G. Sapiro, Inpainting surface holes, Int. Conference on Image Processing, (2003), 903-906. |