Citation: |
[1] |
S. J. Aarseth, Dynamical evolution of clusters of galaxies I, Monthly Notices of the Royal Astronomical Society, 126 (1963), 223-255. |
[2] |
V. Barutello, D. L. Ferrario and S. Terracini, On the singularities of generalized solutions to $n$-body-type problems, Int. Math. Res. Not. IMRN, (2008), Art. ID rnn 069, 78 pp. |
[3] |
G. Bellettini, G. Fusco and G. F. Gronchi, Regularization of the two-body problem via smoothing the potential, Commun. Pure Appl. Anal., 2 (2003), 323-353.doi: 10.3934/cpaa.2003.2.323. |
[4] |
E. De Giorgi, Conjectures concerning some evolution problems, A celebration of John F. Nash, Jr., Duke Math. J., 81 (1996), 255-268.doi: 10.1215/S0012-7094-96-08114-4. |
[5] |
C. C. Dyer and P. S. S. Ip, Softening in N-body simulations of collisionless systems, Astrophysical Journal, 409 (1993), 60-67.doi: 10.1086/172641. |
[6] |
R. Easton, Regularization of vector fields by surgery, J. Differential Equations, 10 (1971), 92-99. |
[7] |
D. L. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem, Invent. Math., 155 (2004), 305-362.doi: 10.1007/s00222-003-0322-7. |
[8] |
W. B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971.doi: 10.2307/2373993. |
[9] |
L. Hernquist and J. E. Barnes, Are some n-body algorithms intrinsically less collisional than others?, Astrophysical Journal, 349 (1990), 562-569.doi: 10.1086/168343. |
[10] |
P. Kustaanheimo and E. Stiefel, Perturbation theory of Kepler motion based on spinor regularization, J. Reine Angew. Math., 218 (1965), 204-219.doi: 10.1515/crll.1965.218.204. |
[11] |
T. Levi-Civita, Sur la régularisation du problème des trois corps, Acta Math., 42 (1920), 99-144.doi: 10.1007/BF02404404. |
[12] |
R. McGehee, Double collisions for a classical particle system with nongravitational interactions, Comment. Math. Helv., 56 (1981), 524-557.doi: 10.1007/BF02566226. |
[13] |
J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure Appl. Math., 23 (1970), 609-636.doi: 10.1002/cpa.3160230406. |
[14] |
C. L. Siegel and J. K. Moser, "Lectures on Celestial Mechanics," Classics in Mathematics, Springer-Verlag, Berlin, 1995. |
[15] |
C. Stoica and A. Font, Global dynamics in the singular logarithmic potential, J. Phys. A, 36 (2003), 7693-7714.doi: 10.1088/0305-4470/36/28/302. |
[16] |
V. G. Szebehely, "Theory of Orbits -- The Restricted Problem of Three Bodies," Academic Press, New York, 1967. |
[17] |
J. Touma and S. Tremaine, A map for eccentric orbits in non-axisymmetric potentials, MNRAS, 292 (1997), 905-932. |
[18] |
E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies," 4th edition, Cambridge University Press, New York, 1959. |