Advanced Search
Article Contents
Article Contents

Crack growth with non-interpenetration: A simplified proof for the pure Neumann problem

Abstract Related Papers Cited by
  • We present a recent existence result concerning the quasistatic evolution of cracks in hyperelastic brittle materials, in the framework of finite elasticity with non-interpenetration. In particular, here we consider the problem where no Dirichlet conditions are imposed, the boundary is traction-free, and the body is subject only to time-dependent volume forces. This allows us to present the main ideas of the proof in a simpler way, avoiding some of the technicalities needed in the general case, studied in [9].
    Mathematics Subject Classification: 35R35, 74R10, 74B20, 49J45, 49Q20, 35A35.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Ambrosio, On the lower semicontinuity of quasiconvex integrals in $SBV(\Omega,\R^k)$, Nonlinear Anal., 23 (1994), 405-425.doi: 10.1016/0362-546X(94)90180-5.


    L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.


    J. M. Ball, Some open problems in elasticity, in "Geometry, Mechanics, and Dynamics" (eds. P. Newton, P. Holmes and A. Weinstein), 3-59, Springer, New York, 2002.


    B. Bourdin, G. A. Francfort and J.-J. Marigo, The variational approach to fracture, J. Elasticity, 91 (2008), 5-148.doi: 10.1007/s10659-007-9107-3.


    A. Chambolle, A density result in two-dimensional linearized elasticity, and applications, Arch. Ration. Mech. Anal., 167 (2003), 211-233.doi: 10.1007/s00205-002-0240-7.


    P. G. Ciarlet, "Mathematical Elasticity. Vol. I. Three-Dimensional Elasticity," Studies in Mathematics and its Applications, 20, North-Holland Publishing Co., Amsterdam, 1988.


    P. G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity, Arch. Ration. Mech. Anal., 97 (1987), 171-188.doi: 10.1007/BF00250807.


    G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal., 176 (2005), 165-225.doi: 10.1007/s00205-004-0351-4.


    G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 257-290.


    G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: Existence and approximation results, Arch. Ration. Mech. Anal., 162 (2002), 101-135.doi: 10.1007/s002050100187.


    E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 82 (1988), 199-210.


    H. Federer, "Geometric Measure Theory," Die Grundlehren der Mathematischen Wissenschaften, 153, Springer-Verlag, New York, 1969.


    G. A. Francfort and C. J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture, Comm. Pure Appl. Math., 56 (2003), 1465-1500.doi: 10.1002/cpa.3039.


    G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342.doi: 10.1016/S0022-5096(98)00034-9.


    G. A. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies, J. Reine Angew. Math., 595 (2006), 55-91.doi: 10.1515/CRELLE.2006.044.


    N. Fusco, C. Leone, R. March and A. Verde, A lower semi-continuity result for polyconvex functionals in SBV, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 321-336.doi: 10.1017/S0308210500004571.


    A. Giacomini and M. Ponsiglione, Non interpenetration of matter for $SBV$-deformations of hyperelastic brittle materials, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 1019-1041.doi: 10.1017/S0308210507000121.


    A. A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. Roy. Soc. London Ser. A, 221 (1920), 163-198.


    G. Lazzaroni, Quasistatic crack growth in finite elasticity with Lipschitz data, Ann. Mat. Pura Appl. (4), 190 (2011), 165-194.doi: 10.1007/s10231-010-0145-2.


    A. Mielke, Evolution of rate-independent systems, in "Evolutionary Equations" (eds. C. M. Dafermos and E. Feireisl), Vol. II, 461-559, Handbook of Differential Equations, Elsevier/North-Holland, Amsterdam, 2005.


    R. W. Ogden, Large deformation isotropic elasticity - on the correlation of theory and experiment for incompressible rubberlike solids, Proc. Roy. Soc. London A, 326 (1972), 565-584.doi: 10.1098/rspa.1972.0026.


    R. W. Ogden, Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids, Proc. Roy. Soc. London A, 328 (1972), 567-583.doi: 10.1098/rspa.1972.0096.

  • 加载中

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint