-
Previous Article
Exhausters, coexhausters and converters in nonsmooth analysis
- DCDS Home
- This Issue
-
Next Article
A variational approach to semilinear elliptic equations with measure data
Center manifold: A case study
1. | Universität Zürich, Institut für Mathematik, Winterthurerstrasse 190, CH–8057 Zürich, Switzerland |
2. | Hausdorff Center for Mathematics, Universität Bonn, Endenicher Allee 60, D-53115 Bonn, Germany |
References:
[1] |
Frederick J. Almgren, Jr., "Almgren's Big Regularity Paper. $Q$-Valued Functions Minimizing Dirichlet's Integral and the Regularity of Area-Minimizing Rectifiable Currents up to Codimension 2," World Scientific Monograph Series in Mathematics, 1, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. |
[2] |
Ennio De Giorgi, "Frontiere Orientate di Misura Minima," Seminario di Matematica della Scuola Normale Superiore di Pisa 1960-61, Editrice Tecnico Scientifica, Pisa, (1961), 57 pp. |
[3] |
Camillo De Lellis and Emanuele Nunzio Spadaro, Higher integrability and approximation of minimal currents,, preprint, ().
|
[4] |
Lawrence C. Evans and Ronald F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. |
[5] |
Eberhard Hopf, Über den funktionalen, insbesondere den analytischen Charakter der Lösun-gen elliptischer Differentialgleichungen zweiter Ordnung, Math. Z., 34 (1932), 194-233.
doi: 10.1007/BF01180586. |
[6] |
Leon Simon, "Lectures on Geometric Measure Theory," Proceedings of the Centre for Mathematical Analysis, Australian National University, 3, Australian National University Centre for Mathematical Analysis, Canberra, 1983. |
[7] |
Elias M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals," Princeton Mathematical Series, 43, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, 1993. |
show all references
References:
[1] |
Frederick J. Almgren, Jr., "Almgren's Big Regularity Paper. $Q$-Valued Functions Minimizing Dirichlet's Integral and the Regularity of Area-Minimizing Rectifiable Currents up to Codimension 2," World Scientific Monograph Series in Mathematics, 1, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. |
[2] |
Ennio De Giorgi, "Frontiere Orientate di Misura Minima," Seminario di Matematica della Scuola Normale Superiore di Pisa 1960-61, Editrice Tecnico Scientifica, Pisa, (1961), 57 pp. |
[3] |
Camillo De Lellis and Emanuele Nunzio Spadaro, Higher integrability and approximation of minimal currents,, preprint, ().
|
[4] |
Lawrence C. Evans and Ronald F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. |
[5] |
Eberhard Hopf, Über den funktionalen, insbesondere den analytischen Charakter der Lösun-gen elliptischer Differentialgleichungen zweiter Ordnung, Math. Z., 34 (1932), 194-233.
doi: 10.1007/BF01180586. |
[6] |
Leon Simon, "Lectures on Geometric Measure Theory," Proceedings of the Centre for Mathematical Analysis, Australian National University, 3, Australian National University Centre for Mathematical Analysis, Canberra, 1983. |
[7] |
Elias M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals," Princeton Mathematical Series, 43, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, 1993. |
[1] |
Anton Petrunin. Correction to: Metric minimizing surfaces. Electronic Research Announcements, 2018, 25: 96-96. doi: 10.3934/era.2018.25.010 |
[2] |
Anton Petrunin. Metric minimizing surfaces. Electronic Research Announcements, 1999, 5: 47-54. |
[3] |
José Ginés Espín Buendía, Daniel Peralta-salas, Gabriel Soler López. Existence of minimal flows on nonorientable surfaces. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4191-4211. doi: 10.3934/dcds.2017178 |
[4] |
Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123. |
[5] |
Francisco Brito, Maria Luiza Leite, Vicente de Souza Neto. Liouville's formula under the viewpoint of minimal surfaces. Communications on Pure and Applied Analysis, 2004, 3 (1) : 41-51. doi: 10.3934/cpaa.2004.3.41 |
[6] |
Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75 |
[7] |
Francesco Maggi, Salvatore Stuvard, Antonello Scardicchio. Soap films with gravity and almost-minimal surfaces. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6877-6912. doi: 10.3934/dcds.2019236 |
[8] |
Rafael López. Plateau-rayleigh instability of singular minimal surfaces. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022086 |
[9] |
Vladimir V. Chepyzhov, Monica Conti, Vittorino Pata. A minimal approach to the theory of global attractors. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2079-2088. doi: 10.3934/dcds.2012.32.2079 |
[10] |
Giovanni Bellettini, Matteo Novaga, Giandomenico Orlandi. Eventual regularity for the parabolic minimal surface equation. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5711-5723. doi: 10.3934/dcds.2015.35.5711 |
[11] |
Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463 |
[12] |
Xifeng Su, Rafael de la Llave. On a remarkable example of F. Almgren and H. Federer in the global theory of minimizing geodesics. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7057-7080. doi: 10.3934/dcds.2019295 |
[13] |
Andrea Cianchi, Vladimir Maz'ya. Global gradient estimates in elliptic problems under minimal data and domain regularity. Communications on Pure and Applied Analysis, 2015, 14 (1) : 285-311. doi: 10.3934/cpaa.2015.14.285 |
[14] |
Gernot Greschonig. Regularity of topological cocycles of a class of non-isometric minimal homeomorphisms. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4305-4321. doi: 10.3934/dcds.2013.33.4305 |
[15] |
Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure and Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407 |
[16] |
Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121 |
[17] |
Filippo Morabito. Singly periodic free boundary minimal surfaces in a solid cylinder of $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4987-5001. doi: 10.3934/dcds.2015.35.4987 |
[18] |
Mehmet Onur Fen, Marat Akhmet. Impulsive SICNNs with chaotic postsynaptic currents. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1119-1148. doi: 10.3934/dcdsb.2016.21.1119 |
[19] |
Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591 |
[20] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]