December  2011, 31(4): 1365-1381. doi: 10.3934/dcds.2011.31.1365

Radial solutions to energy supercritical wave equations in odd dimensions

1. 

Department of Mathematics, University of Chicago, Chicago, Illinois, 60637-1514, United States

2. 

Cergy Pontoise (UMR 8088) and IHES, France

Received  March 2009 Revised  April 2010 Published  September 2011

We establish pointwise decay bounds for radial, compact solutions of energy supercritical wave equations in odd dimensions. Applications are given.
Citation: Carlos E. Kenig, Frank Merle. Radial solutions to energy supercritical wave equations in odd dimensions. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1365-1381. doi: 10.3934/dcds.2011.31.1365
References:
[1]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175. doi: 10.1353/ajm.1999.0001.

[2]

A. Bulut, Maximizers for the Strichartz inequality for the wave equation, preprint, arXiv:0905.1678.

[3]

A. Bulut, Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation, preprint, arXiv:1006.4168.

[4]

A. Bulut, M. Czubak, D. Li, N. Pavlovic and X. Zhang, Stability and unconditional uniqueness of solutions for energy critical wave equations in high dimensions, preprint, arXiv:0911.4534.

[5]

L. Iskauriaza, G. Serëgin and V. Shverak, $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 3-44; translation in Russian Math. Surveys, 58 (2003), 211-250.

[6]

I. Gallagher, G. Koch and F. Planchon, A profile decomposition approach to the $L^\infty_tL^3_x$ Navier-Stokes regularity criterion, preprint, arXiv:1012.0145.

[7]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68. doi: 10.1006/jfan.1995.1119.

[8]

C. Kenig, Global well-posedness and scattering for the energy critical focusing nonlinear Schrödinger and wave equations, Lecture notes for a mini course given at "Analyse des Equations aux Derivées Partielles," Evian-les-Bains, 2007. Available from: http://www.math.uchicago.edu/~cek.

[9]

C. Kenig, The concentration-compactness/rigidity theorem method for critical dispersive and wave equations, Lectures for a course given at CRM, Bellaterra, Spain, May 2008. Available from: http://www.math.uchicago.edu/~cek.

[10]

C. Kenig, Recent developments on the global behavior to critical nonlinear dispersive equations, Proceedings of the International Congress of Mathematicians 2010, 1 (2010), 326-338.

[11]

C. Kenig and G. Koch, An alternative approach to regularity for the Navier-Stokes equation in a critical space, to appear on Ann. Inst. H. Poincaré Anal. Non Linéaire, 2011.

[12]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.

[13]

C. Kenig and F. Merle, Global well-posedness, scatering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212. doi: 10.1007/s11511-008-0031-6.

[14]

C. Kenig and F. Merle, Scattering for $\dot H^{1/2}$ bounded solutions to the cubic defocusing NLS in 3 dimensions, Trans. Amer. Math. Soc., 362 (2010), 1937-1962. doi: 10.1090/S0002-9947-09-04722-9.

[15]

C. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, to appear on Amer. J. Math., 2011.

[16]

C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[17]

R. Killip and M. Visan, The defocusing energy-supercritical nonlinear wave equation in three space dimensions, preprint, arXiv:1001.1761.

[18]

R. Killip and M. Visan, The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions, preprint, arXiv:1002.1756.

[19]

F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices, 1998, 399-425. doi: 10.1155/S1073792898000270.

[20]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations, Proc. Roy. Soc. Ser. A, 306 (1968), 291-296. doi: 10.1098/rspa.1968.0151.

[21]

B. Perthame and L. Vega, Morrey-Campanato estimates for Helmholtz equations, J. Funct. Anal., 164 (1999), 340-355. doi: 10.1006/jfan.1999.3391.

[22]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, 1970.

[23]

R. J. Taggart, Inhomogeneous Stichartz estimates, Forum Math., 22 (2010), 825-853. doi: 10.1515/FORUM.2010.044.

show all references

References:
[1]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175. doi: 10.1353/ajm.1999.0001.

[2]

A. Bulut, Maximizers for the Strichartz inequality for the wave equation, preprint, arXiv:0905.1678.

[3]

A. Bulut, Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation, preprint, arXiv:1006.4168.

[4]

A. Bulut, M. Czubak, D. Li, N. Pavlovic and X. Zhang, Stability and unconditional uniqueness of solutions for energy critical wave equations in high dimensions, preprint, arXiv:0911.4534.

[5]

L. Iskauriaza, G. Serëgin and V. Shverak, $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 3-44; translation in Russian Math. Surveys, 58 (2003), 211-250.

[6]

I. Gallagher, G. Koch and F. Planchon, A profile decomposition approach to the $L^\infty_tL^3_x$ Navier-Stokes regularity criterion, preprint, arXiv:1012.0145.

[7]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68. doi: 10.1006/jfan.1995.1119.

[8]

C. Kenig, Global well-posedness and scattering for the energy critical focusing nonlinear Schrödinger and wave equations, Lecture notes for a mini course given at "Analyse des Equations aux Derivées Partielles," Evian-les-Bains, 2007. Available from: http://www.math.uchicago.edu/~cek.

[9]

C. Kenig, The concentration-compactness/rigidity theorem method for critical dispersive and wave equations, Lectures for a course given at CRM, Bellaterra, Spain, May 2008. Available from: http://www.math.uchicago.edu/~cek.

[10]

C. Kenig, Recent developments on the global behavior to critical nonlinear dispersive equations, Proceedings of the International Congress of Mathematicians 2010, 1 (2010), 326-338.

[11]

C. Kenig and G. Koch, An alternative approach to regularity for the Navier-Stokes equation in a critical space, to appear on Ann. Inst. H. Poincaré Anal. Non Linéaire, 2011.

[12]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.

[13]

C. Kenig and F. Merle, Global well-posedness, scatering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212. doi: 10.1007/s11511-008-0031-6.

[14]

C. Kenig and F. Merle, Scattering for $\dot H^{1/2}$ bounded solutions to the cubic defocusing NLS in 3 dimensions, Trans. Amer. Math. Soc., 362 (2010), 1937-1962. doi: 10.1090/S0002-9947-09-04722-9.

[15]

C. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, to appear on Amer. J. Math., 2011.

[16]

C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[17]

R. Killip and M. Visan, The defocusing energy-supercritical nonlinear wave equation in three space dimensions, preprint, arXiv:1001.1761.

[18]

R. Killip and M. Visan, The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions, preprint, arXiv:1002.1756.

[19]

F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices, 1998, 399-425. doi: 10.1155/S1073792898000270.

[20]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations, Proc. Roy. Soc. Ser. A, 306 (1968), 291-296. doi: 10.1098/rspa.1968.0151.

[21]

B. Perthame and L. Vega, Morrey-Campanato estimates for Helmholtz equations, J. Funct. Anal., 164 (1999), 340-355. doi: 10.1006/jfan.1999.3391.

[22]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, 1970.

[23]

R. J. Taggart, Inhomogeneous Stichartz estimates, Forum Math., 22 (2010), 825-853. doi: 10.1515/FORUM.2010.044.

[1]

Hideo Kubo. On the critical decay and power for semilinear wave equtions in odd space dimensions. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 173-190. doi: 10.3934/dcds.1996.2.173

[2]

Thinh Tien Nguyen. Asymptotic limit and decay estimates for a class of dissipative linear hyperbolic systems in several dimensions. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1651-1684. doi: 10.3934/dcds.2019073

[3]

Yongqin Liu, Weike Wang. The pointwise estimates of solutions for dissipative wave equation in multi-dimensions. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1013-1028. doi: 10.3934/dcds.2008.20.1013

[4]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[5]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control and Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[6]

Marco Cappiello, Fabio Nicola. Sharp decay estimates and smoothness for solutions to nonlocal semilinear equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1869-1880. doi: 10.3934/dcds.2016.36.1869

[7]

Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69

[8]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[9]

Guillermo Reyes, Juan-Luis Vázquez. The inhomogeneous PME in several space dimensions. Existence and uniqueness of finite energy solutions. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1275-1294. doi: 10.3934/cpaa.2008.7.1275

[10]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[11]

Zhigang Wu, Weike Wang. Pointwise estimates of solutions for the Euler-Poisson equations with damping in multi-dimensions. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 1101-1117. doi: 10.3934/dcds.2010.26.1101

[12]

Gabriele Grillo, Matteo Muratori, Maria Michaela Porzio. Porous media equations with two weights: Smoothing and decay properties of energy solutions via Poincaré inequalities. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3599-3640. doi: 10.3934/dcds.2013.33.3599

[13]

Yizhao Qin, Yuxia Guo, Peng-Fei Yao. Energy decay and global smooth solutions for a free boundary fluid-nonlinear elastic structure interface model with boundary dissipation. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1555-1593. doi: 10.3934/dcds.2020086

[14]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[15]

Abbes Benaissa, Abderrahmane Kasmi. Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4361-4395. doi: 10.3934/dcdsb.2018168

[16]

Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014

[17]

Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001

[18]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[19]

Karen Yagdjian, Anahit Galstian. Fundamental solutions for wave equation in Robertson-Walker model of universe and $L^p-L^q$ -decay estimates. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 483-502. doi: 10.3934/dcdss.2009.2.483

[20]

Linghai Zhang. Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2181-2200. doi: 10.3934/dcdss.2016091

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (114)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]