\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Estimates of the derivatives of minimizers of a special class of variational integrals

Abstract Related Papers Cited by
  • The note concerns on some estimates in Morrey Spaces for the derivatives of local minimizers of variational integrals of the form $$\int_\Omega F (x,u,Du) dx $$ where the integrand has the following special form $$ F(x,u,Du)\, =\, A(x,u, g^{\alpha\beta}(x) h_{ij}(u) \frac{\partial u^i}{\partial x^\alpha} \frac{\partial u^i }{\partial x^\beta}), $$ where $(g^{\alpha\beta})$ and $(h_{ij})$ symmetric positive definite matrices. We are not assuming the continuity of $A$ and $g$ with respect to $x$. We suppose that $A(\cdot, u,t)/(1+t)$ and $g(\cdot)$ are in the class $L^\infty\cap VMO$.
    Mathematics Subject Classification: Primary: 49N60, 35J50, 35R05; Secondary: 46E30, 35B65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Acerbi and N. Fusco, Regularity for minimizers of nonquadratic functionals: The case $1140 (1989), 115-135.

    [2]

    E. Acerbi and G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J., 136 (2007), 285-320.doi: 10.1215/S0012-7094-07-13623-8.

    [3]

    L. Caffarelli, Elliptic second order equations, Rend. Sem. Mat. Fis. Milano, 58 (1988), 253-284.doi: 10.1007/BF02925245.

    [4]

    L. Caffarelli, Interior a priori estimates for solutions of fully non linear equations, Ann. of Math., 130 (1989), 189-213.doi: 10.2307/1971480.

    [5]

    S. Campanato, Equazioni ellittiche del $II$ ordine e spazi $\mathcalL^{2,\lambda},$ Ann. Mat. Pura Appl., 69 (1965), 321-382.doi: 10.1007/BF02414377.

    [6]

    S. Campanato, A maximum principle for non-linear elliptic systems: Boundary fundamental estimates, Adv. Math., 66 (1987), 291-317.doi: 10.1016/0001-8708(87)90037-5.

    [7]

    S. Campanato, Elliptic systems with non-linearity $q$ greater or equal $2. $Regularity of the solution of the Dirichlet problem, Ann. Mat. Pura Appl., 147 (1987), 117-150.doi: 10.1007/BF01762414.

    [8]

    F. Chiarenza, M. Frasca and P. Longo, Interior $W^{2,p}$ estimates for non divergence elliptic equations with discontinuous coefficients, Ric. di Mat., XL 1, (1991), 149-168.

    [9]

    E. Di Benedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic vequations, Nonlinear Anal., 7 (1983), 827-850.doi: 10.1016/0362-546X(83)90061-5.

    [10]

    J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 253-266.doi: 10.2307/2373037.

    [11]

    M. Fuchs, Everywhere regularity theorems for mapping which minimize $p$-energy, Comment. Math. Univ. Carolin., 28 (1987), 673-677.

    [12]

    M. Fuchs, $p$-harmonic obstacle problems. I. Partial regularity theory, Ann. Mat. Pura Appl. (4), 156 (1990), 127-158.doi: 10.1007/BF01766976.

    [13]

    N. Fusco and J. Hutchinson, Partial regularity for minimisers of certain functionals having nonquadratic growth, Ann. Mat. Pura Appl., 155 (1989), 1-24.doi: 10.1007/BF01765932.

    [14]

    M. Giaquinta, "Introduction to Regularity Theory for Nonlinear Elliptic Systems," Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel-Boston-Berlin, 1993,

    [15]

    M. Giaquinta and E. Giusti, Partial regularity for the solution to nonlinear parabolic systems, Ann. Mat. Pura Appl., 47 (1973), 253-266.

    [16]

    M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals, Acta Math., 148 (1982), 31-46.doi: 10.1007/BF02392725.

    [17]

    M. Giaquinta and E. Giusti, Differentiability of minima of non-differentiable functionals, Inv. Math., 72 (1983), 285-298.doi: 10.1007/BF01389324.

    [18]

    M. Giaquinta and E. Giusti, The singular set of the minima of certain quadratic functionals, Ann. Sc. Norm. Sup. Pisa, 9 (1984), 45-55.

    [19]

    M. Giaquinta and P. A. Ivert, Partial regularity for minima of variational integrals, Ark. Mat., 25 (1987), 221-229.doi: 10.1007/BF02384445.

    [20]

    M. Giaquinta and G. Modica, Regularity results for some classes of higher order non linear elliptic systems, J. Reine Angew. Math., 311/312 (1979), 145-169.

    [21]

    M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. H. Poincaré, Analyse nonlinéare, 3 (1986), 185-208.

    [22]

    M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math., 57 (1986), 55-99.doi: 10.1007/BF01172492.

    [23]

    E. Giusti, Regolarita' parziale delle soluzioni deboli di una classe di sistemi ellittici quasi lineari di ordine arbitrario, Ann. Sc. Norm. Sup. Pisa, 23 (1969), 115-141.

    [24]

    E. Giusti, "Direct Method in the Calculus of Variations," World Scientific, 2003.

    [25]

    E. Giusti and M. Miranda, Sulla regolarita' delle soluzioni deboli di una classe di sistemi ellittici quasilineari, Arch. Rat. Mech. Anal., 31 (1968), 173-184.doi: 10.1007/BF00282679.

    [26]

    R. Hardt and F.-H. Lin, Mappings minimizing the $L^p$ norm of the gradient, Comm. Pure Appl. Math., 40 (1987), 555-588.doi: 10.1002/cpa.3160400503.

    [27]

    F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-476.doi: 10.1002/cpa.3160140317.

    [28]

    J. Kinnunen and S. Zhou, A local estimate for nonlinear equations with discontinuous coefficients, Comm. Partial Differential Equations, 24 (1999), 2043-2068.

    [29]

    J. Kristensen and G. Mingione, The singular set of minima of integral functionals, Arch. Ration. Mech. Anal., 180 (2006), 331-398.doi: 10.1007/s00205-005-0402-5.

    [30]

    J. J. Manfredi, Regularity for minima of functionals with $p$-growth, J. Differential Equations, 76 (1988), 203-212.

    [31]

    G. Mingione, Singularities of minima: A walk on the wild side of the calculus of variations, J. Global Optim., 40 (2008), 209-223.doi: 10.1007/s10898-007-9226-1.

    [32]

    C. B. Morrey Jr.Partial regularity results for nonlinear elliptic systems, Journ. Math. and Mech., 17 (1967/68), 649-670.

    [33]

    M. A. Ragusa and A. Tachikawa, "Interior Estimates in Campanato Spaces Related to Quadratic Functionals," Proceedings of Research Institute of Mathematical Sciences, Kyoto, (2004), 54-65.

    [34]

    M. A. Ragusa and A. Tachikawa, Regularity of the minimizers of some variational integrals with discontinuity, Z. Anal. Anwend., 27 (2008), 469-482.doi: 10.4171/ZAA/1366.

    [35]

    D. Sarason, On functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 207 (1975), 391-405.doi: 10.1090/S0002-9947-1975-0377518-3.

    [36]

    L. M. Sibner and R. B. Sibner, A non-linear Hodge de Rham theorem, Acta Math., 125 (1970), 57-73.doi: 10.1007/BF02392330.

    [37]

    P. Tolksdorf, Everywhere-regularity for some quasilinear systems with a lack of ellipticity, Ann. Mat. Pura Appl., 134 (1983), 241-266.doi: 10.1007/BF01773507.

    [38]

    P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.

    [39]

    K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math., 138 (1977), 219-240.doi: 10.1007/BF02392316.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(59) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return