Citation: |
[1] |
J.-P. Antoine, A. Inoue and C. Trapani, "Partial *-Algebras and Their Operator Realizations," Mathematics and its Applications, 553, Kluwer Academic Publishers, Dordrecht, 2002. |
[2] |
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. |
[3] |
F. Bagarello, A. Inoue and C. Trapani, Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc., 129 (2001), 2973-2980.doi: 10.1090/S0002-9939-01-06019-1. |
[4] |
F. Bagarello and G. Morchio, Dynamics of mean-field spin models from basic results in abstract differential equations, J. Stat. Phys., 66 (1992), 849-866.doi: 10.1007/BF01055705. |
[5] |
F. Bagarello and C. Trapani, States and representations of $CQ$*-algebras, Ann. Inst. H. Poincaré Phys. Théor., 61 (1994), 103-133. |
[6] |
F. Bagarello and C. Trapani, $CQ$*-algebras: Structure properties, Publ. Res. Inst. Math. Sci., 32 (1996), 85-116.doi: 10.2977/prims/1195163181. |
[7] |
F. Bagarello and C. Trapani, Morphisms of certain Banach $C$*-modules, Publ. Res. Inst. Math. Sci., 36 (2000), 681-705.doi: 10.2977/prims/1195139642. |
[8] |
S. Czerwik, "Stability of Functional Equations of Ulam-Hyers-Rassias Type," Hadronic Press, Inc., Palm Harbor, USA, pp. 200. |
[9] |
S. Czerwik, "Functional Equations and Inequalities in Several Variables," World Scientific Publishing Co., Inc., River Edge, NJ, 2002. |
[10] |
G. O. S. Ekhaguere, Partial $W$*-dynamical systems, in "Current Topics in Operator Algebras" (Nara, 1990), World Scientific Publ., River Edge, NJ, (1991), 202-217. |
[11] |
G. Z. Eskandani, On the Hyers-–Ulam-–Rassias stability of an additive functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 345 (2008), 405-409.doi: 10.1016/j.jmaa.2008.03.039. |
[12] |
G. Z. Eskandani, H. Vaezi and Y. N. Dehghan, Stability of a mixed additive and quadratic functional equation in non-Archimedean Banach modules, Taiwanese J. Math., 14 (2010), 1309-1324. |
[13] |
P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.doi: 10.1006/jmaa.1994.1211. |
[14] |
R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys., 5 (1964), 848-861.doi: 10.1063/1.1704187. |
[15] |
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222-224.doi: 10.1073/pnas.27.4.222. |
[16] |
D. H. Hyers, G. Isac Th. M. Rassias, "Stability of Functional Equations in Several Variables," Progress in Nonlinear Differential Equations and their Applications, 34, Birkhäuser Boston, Inc., Boston, MA, 1998. |
[17] |
D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125-153.doi: 10.1007/BF01830975. |
[18] |
S.-M. Jung, "Hyers-Ulam-Rassias Stability of Functional Equations in Mathimatical Analysis," Hadronic Press, Palm Harbor, FL, 2001. |
[19] |
Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math., 22 (1989), 499-507. |
[20] |
G. Lassner, Topological algebras and their applications in quantum statistics, Wiss. Z. KMU, Leipzig, Math.-Nat. R., 30 (1981), 572-595. |
[21] |
G. Lassner and G. A. Lassner, Quasi* -algebras and twisted product, Publ. RIMS, 25 (1989), 279-299.doi: 10.2977/prims/1195173612. |
[22] |
F. Moradlou, H. Vaezi and C. Park, Fixed points and stability of an additive functional equation of $n$-Apollonius type in $C$*-algebras, Abstract and Applied Analysis, 2008, Article ID 672618, 13 pp.doi: 10.1155/2008/672618. |
[23] |
F. Moradlou, H. Vaezi and G. Z. Eskandani, Hyers-–Ulam-–Rassias stability of a quadratic and additive functional equation in quasi-Banach spaces, Mediterr. J. of Math., 6 (2009), 233-248. |
[24] |
A. Najati and G. Z. Eskandani, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 342 (2008), 1318-1331.doi: 10.1016/j.jmaa.2007.12.039. |
[25] |
C. Park, Homomorphisms between Poisson $JC$*-algebras, Bull. Braz. Math. Soc., 36 (2005), 79-97.doi: 10.1007/s00574-005-0029-z. |
[26] |
C. Park and Th. M. Rassias, Homomorphisms and derivations in proper $JCQ$*-triples, J. Math. Anal. Appl., 337 (2008), 1404-1414.doi: 10.1016/j.jmaa.2007.04.063. |
[27] |
J. C. Parnami and H. L. Vasudeva, On Jensen’s functional equation, Aequationes Math., 43 (1992), 211-218.doi: 10.1007/BF01835703. |
[28] |
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.doi: 10.1090/S0002-9939-1978-0507327-1. |
[29] |
Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., 158 (1991), 106-113.doi: 10.1016/0022-247X(91)90270-A. |
[30] |
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Applicandae Mathematicae, 62 (2000), 23-130.doi: 10.1023/A:1006499223572. |
[31] |
Th. M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., 173 (1993), 325-338.doi: 10.1006/jmaa.1993.1070. |
[32] |
G. L. Sewell, "Quantum Mechanics and its Emergent Macrophysics," Princeton Univ. Press, Princeton, NJ, 2002. |
[33] |
C. Trapani, Quasi-*-algebras of operators and their applications, Rev. Math. Phys., 7 (1995), 1303-1332.doi: 10.1142/S0129055X95000475. |
[34] |
S. M. Ulam, "A Collection of the Mathematical Problems," Interscience Tracts in Pure and Applied Mathematics, 8, Interscience Publ., New York-London, 1960. |