\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hyers--Ulam--Rassias stability of derivations in proper Jordan $CQ^{*}$-algebras

Abstract Related Papers Cited by
  • In this paper, we investigate derivation in proper Jordan $CQ^{*}$-algebras associated with the following Pexiderized Jensen type functional equation \[kf(\frac{x+y}{k}) = f_{0}(x)+ f_{1} (y).\] This is applied to investigate derivations and their Hyers--Ulam--Rassias stability in proper Jordan $CQ^{*}$-algebras.
    Mathematics Subject Classification: 17B40, 39B52, 47N50, 47L60, 46B03.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J.-P. Antoine, A. Inoue and C. Trapani, "Partial *-Algebras and Their Operator Realizations," Mathematics and its Applications, 553, Kluwer Academic Publishers, Dordrecht, 2002.

    [2]

    T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.

    [3]

    F. Bagarello, A. Inoue and C. Trapani, Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc., 129 (2001), 2973-2980.doi: 10.1090/S0002-9939-01-06019-1.

    [4]

    F. Bagarello and G. Morchio, Dynamics of mean-field spin models from basic results in abstract differential equations, J. Stat. Phys., 66 (1992), 849-866.doi: 10.1007/BF01055705.

    [5]

    F. Bagarello and C. Trapani, States and representations of $CQ$*-algebras, Ann. Inst. H. Poincaré Phys. Théor., 61 (1994), 103-133.

    [6]

    F. Bagarello and C. Trapani, $CQ$*-algebras: Structure properties, Publ. Res. Inst. Math. Sci., 32 (1996), 85-116.doi: 10.2977/prims/1195163181.

    [7]

    F. Bagarello and C. Trapani, Morphisms of certain Banach $C$*-modules, Publ. Res. Inst. Math. Sci., 36 (2000), 681-705.doi: 10.2977/prims/1195139642.

    [8]

    S. Czerwik, "Stability of Functional Equations of Ulam-Hyers-Rassias Type," Hadronic Press, Inc., Palm Harbor, USA, pp. 200.

    [9]

    S. Czerwik, "Functional Equations and Inequalities in Several Variables," World Scientific Publishing Co., Inc., River Edge, NJ, 2002.

    [10]

    G. O. S. Ekhaguere, Partial $W$*-dynamical systems, in "Current Topics in Operator Algebras" (Nara, 1990), World Scientific Publ., River Edge, NJ, (1991), 202-217.

    [11]

    G. Z. Eskandani, On the Hyers-–Ulam-–Rassias stability of an additive functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 345 (2008), 405-409.doi: 10.1016/j.jmaa.2008.03.039.

    [12]

    G. Z. Eskandani, H. Vaezi and Y. N. Dehghan, Stability of a mixed additive and quadratic functional equation in non-Archimedean Banach modules, Taiwanese J. Math., 14 (2010), 1309-1324.

    [13]

    P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.doi: 10.1006/jmaa.1994.1211.

    [14]

    R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys., 5 (1964), 848-861.doi: 10.1063/1.1704187.

    [15]

    D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222-224.doi: 10.1073/pnas.27.4.222.

    [16]

    D. H. Hyers, G. Isac Th. M. Rassias, "Stability of Functional Equations in Several Variables," Progress in Nonlinear Differential Equations and their Applications, 34, Birkhäuser Boston, Inc., Boston, MA, 1998.

    [17]

    D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125-153.doi: 10.1007/BF01830975.

    [18]

    S.-M. Jung, "Hyers-Ulam-Rassias Stability of Functional Equations in Mathimatical Analysis," Hadronic Press, Palm Harbor, FL, 2001.

    [19]

    Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math., 22 (1989), 499-507.

    [20]

    G. Lassner, Topological algebras and their applications in quantum statistics, Wiss. Z. KMU, Leipzig, Math.-Nat. R., 30 (1981), 572-595.

    [21]

    G. Lassner and G. A. Lassner, Quasi* -algebras and twisted product, Publ. RIMS, 25 (1989), 279-299.doi: 10.2977/prims/1195173612.

    [22]

    F. Moradlou, H. Vaezi and C. Park, Fixed points and stability of an additive functional equation of $n$-Apollonius type in $C$*-algebras, Abstract and Applied Analysis, 2008, Article ID 672618, 13 pp.doi: 10.1155/2008/672618.

    [23]

    F. Moradlou, H. Vaezi and G. Z. Eskandani, Hyers-–Ulam-–Rassias stability of a quadratic and additive functional equation in quasi-Banach spaces, Mediterr. J. of Math., 6 (2009), 233-248.

    [24]

    A. Najati and G. Z. Eskandani, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 342 (2008), 1318-1331.doi: 10.1016/j.jmaa.2007.12.039.

    [25]

    C. Park, Homomorphisms between Poisson $JC$*-algebras, Bull. Braz. Math. Soc., 36 (2005), 79-97.doi: 10.1007/s00574-005-0029-z.

    [26]

    C. Park and Th. M. Rassias, Homomorphisms and derivations in proper $JCQ$*-triples, J. Math. Anal. Appl., 337 (2008), 1404-1414.doi: 10.1016/j.jmaa.2007.04.063.

    [27]

    J. C. Parnami and H. L. Vasudeva, On Jensen’s functional equation, Aequationes Math., 43 (1992), 211-218.doi: 10.1007/BF01835703.

    [28]

    Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.doi: 10.1090/S0002-9939-1978-0507327-1.

    [29]

    Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., 158 (1991), 106-113.doi: 10.1016/0022-247X(91)90270-A.

    [30]

    Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Applicandae Mathematicae, 62 (2000), 23-130.doi: 10.1023/A:1006499223572.

    [31]

    Th. M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., 173 (1993), 325-338.doi: 10.1006/jmaa.1993.1070.

    [32]

    G. L. Sewell, "Quantum Mechanics and its Emergent Macrophysics," Princeton Univ. Press, Princeton, NJ, 2002.

    [33]

    C. Trapani, Quasi-*-algebras of operators and their applications, Rev. Math. Phys., 7 (1995), 1303-1332.doi: 10.1142/S0129055X95000475.

    [34]

    S. M. Ulam, "A Collection of the Mathematical Problems," Interscience Tracts in Pure and Applied Mathematics, 8, Interscience Publ., New York-London, 1960.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return