# American Institute of Mathematical Sciences

March  2011, 31(1): 275-299. doi: 10.3934/dcds.2011.31.275

## Preservation of homoclinic orbits under discretization of delay differential equations

 1 School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China 2 School of Mathematics, Jilin University, Changchun 130012, China

Received  February 2010 Revised  November 2010 Published  June 2011

In this paper, we propose a nondegenerate condition for a homoclinic orbit with respect to a parameter in delay differential equations. Based on this nondegeneracy we describe and investigate the regularity of the homoclinic orbit together with parameter. Then we show that a forward Euler method, when applied to a one-parameteric system of delay differential equations with a homoclinic orbit, also exhibits a closed loop of discrete homoclinic orbits. These discrete homoclinic orbits tend to the continuous one by the rate of $O(\varepsilon)$ as the step-size $\varepsilon$ goes to $0$. And the corresponding parameter varies periodically with respect to a phase parameter with period $\varepsilon$ while the orbit shifts its index after one revolution. We also show that at least two homoclinic tangencies occur on this loop. By numerical simulations, the theoretical results are illustrated, and the possibility of extending theoretical results to the implicit and higher order numerical schemes is discussed.
Citation: Yingxiang Xu, Yongkui Zou. Preservation of homoclinic orbits under discretization of delay differential equations. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 275-299. doi: 10.3934/dcds.2011.31.275
##### References:
 [1] W.-J. Beyn, The effect of discretization on homoclinic orbits, in "Bifurcation: Analysis, Algorithms, Applications," Internat. Ser. Numer. Math., 79, Birkhäuser, Basel, (1987), 1-8. [2] W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems, IMA J. Numer. Anal., 10 (1990), 379-405. doi: 10.1093/imanum/10.3.379. [3] W.-J. Beyn and J.-M. Kleinkauf, The numerical computation of homoclinic orbits for maps, SIAM J. Numer. Anal., 34 (1997), 1207-1236. doi: 10.1137/S0036142995281693. [4] W. A. Coppel, "Dichotomies in Stability Theory," Lecture Notes in Mathematics, 629, Springer-Verlag, Berlin-New York, 1978. [5] K. Engelborghs and E. J. Doedel, Stability of piecewise polynomial collocation for computing periodic solutions of delay differential equations, Numer. Math., 91 (2002), 627-648. doi: 10.1007/s002110100313. [6] K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Software, 28 (2002), 1-21. doi: 10.1145/513001.513002. [7] G. Farkas, Unstable manifolds for RFDEs under discretization: The Euler method, Comput. Math. Appl., 42 (2001), 1069-1081. doi: 10.1016/S0898-1221(01)00222-X. [8] G. Farkas, A numerical $C^1$-shadowing result for retarded functional differential equations, J. Compt. Appl. Math., 145 (2002), 269-289. doi: 10.1016/S0377-0427(01)00581-7. [9] G. Farkas, Nonexistence of uniform exponential dichotomies for delay equations, J. Differential Equations, 182 (2002), 266-268. [10] B. Fiedler and J. Scheurle, Discretization of homoclinic orbits, rapid forcing and 'invisible' chaos, Mem. Amer. Math. Soc., 119 (1996). [11] J. K. Hale and S. M. Lunel, "Introduction to Functional-Differential Equations," Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. [12] J. K. Hale and W. Zhang, On uniformity of exponential dichotomies for delay equations, J. Differential Equations, 204 (2004), 1-4. [13] K. In't Hout and C. Lubich, Periodic orbits of delay differential equations under discretization, BIT, 38 (1998), 72-91. doi: 10.1007/BF02510918. [14] U. Kirehgraber, F. Lasagni, K. Nipp and D. Stoffer, On the application of invariant manifold theory, in particular to numerical analysis, in "Bifurcation and Chaos: Analysis, Algorithms, Applications," Internat. Ser. Numer. Math. (eds. R. Seydel et al.), 97, Birkhäuser, Basel, (1991), 189-197. [15] X.-B. Lin, Exponential dichotomies and homoclinic orbits in functional-differential equations, J. Differential Equations, 63 (1986), 227-254. [16] K. J. Palmer, "Shadowing in Dynamical Systems. Theory and Applications," Mathematics and its Applications, 501, Kluwer Academic Publishers, Dordrecht, 2000. [17] M. L. Peña, Exponential dichotomy for singularly perturbed linear functional-differential equations with small delays, Appl. Anal., 47 (1992), 213-225. doi: 10.1080/00036819208840141. [18] G. Samaey, K. Engelborghs and D. Roose, Numerical computation of connecting orbits in delay differential equations, Numer. Algorithms, 30 (2002), 335-352. doi: 10.1023/A:1020102317544. [19] Y.-K. Zou and W.-J. Beyn, On manifolds of connecting orbits in discretizations of dynamical systems, Nonlinear Anal., 52 (2003), 1499-1520. doi: 10.1016/S0362-546X(02)00269-9. [20] Y.-K. Zou and W.-J. Beyn, On the existence of transversal heteroclinic orbits in discretized dynamical systems, Nonlinearity, 17 (2004), 2275-2292. doi: 10.1088/0951-7715/17/6/014.

show all references

##### References:
 [1] W.-J. Beyn, The effect of discretization on homoclinic orbits, in "Bifurcation: Analysis, Algorithms, Applications," Internat. Ser. Numer. Math., 79, Birkhäuser, Basel, (1987), 1-8. [2] W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems, IMA J. Numer. Anal., 10 (1990), 379-405. doi: 10.1093/imanum/10.3.379. [3] W.-J. Beyn and J.-M. Kleinkauf, The numerical computation of homoclinic orbits for maps, SIAM J. Numer. Anal., 34 (1997), 1207-1236. doi: 10.1137/S0036142995281693. [4] W. A. Coppel, "Dichotomies in Stability Theory," Lecture Notes in Mathematics, 629, Springer-Verlag, Berlin-New York, 1978. [5] K. Engelborghs and E. J. Doedel, Stability of piecewise polynomial collocation for computing periodic solutions of delay differential equations, Numer. Math., 91 (2002), 627-648. doi: 10.1007/s002110100313. [6] K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Software, 28 (2002), 1-21. doi: 10.1145/513001.513002. [7] G. Farkas, Unstable manifolds for RFDEs under discretization: The Euler method, Comput. Math. Appl., 42 (2001), 1069-1081. doi: 10.1016/S0898-1221(01)00222-X. [8] G. Farkas, A numerical $C^1$-shadowing result for retarded functional differential equations, J. Compt. Appl. Math., 145 (2002), 269-289. doi: 10.1016/S0377-0427(01)00581-7. [9] G. Farkas, Nonexistence of uniform exponential dichotomies for delay equations, J. Differential Equations, 182 (2002), 266-268. [10] B. Fiedler and J. Scheurle, Discretization of homoclinic orbits, rapid forcing and 'invisible' chaos, Mem. Amer. Math. Soc., 119 (1996). [11] J. K. Hale and S. M. Lunel, "Introduction to Functional-Differential Equations," Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. [12] J. K. Hale and W. Zhang, On uniformity of exponential dichotomies for delay equations, J. Differential Equations, 204 (2004), 1-4. [13] K. In't Hout and C. Lubich, Periodic orbits of delay differential equations under discretization, BIT, 38 (1998), 72-91. doi: 10.1007/BF02510918. [14] U. Kirehgraber, F. Lasagni, K. Nipp and D. Stoffer, On the application of invariant manifold theory, in particular to numerical analysis, in "Bifurcation and Chaos: Analysis, Algorithms, Applications," Internat. Ser. Numer. Math. (eds. R. Seydel et al.), 97, Birkhäuser, Basel, (1991), 189-197. [15] X.-B. Lin, Exponential dichotomies and homoclinic orbits in functional-differential equations, J. Differential Equations, 63 (1986), 227-254. [16] K. J. Palmer, "Shadowing in Dynamical Systems. Theory and Applications," Mathematics and its Applications, 501, Kluwer Academic Publishers, Dordrecht, 2000. [17] M. L. Peña, Exponential dichotomy for singularly perturbed linear functional-differential equations with small delays, Appl. Anal., 47 (1992), 213-225. doi: 10.1080/00036819208840141. [18] G. Samaey, K. Engelborghs and D. Roose, Numerical computation of connecting orbits in delay differential equations, Numer. Algorithms, 30 (2002), 335-352. doi: 10.1023/A:1020102317544. [19] Y.-K. Zou and W.-J. Beyn, On manifolds of connecting orbits in discretizations of dynamical systems, Nonlinear Anal., 52 (2003), 1499-1520. doi: 10.1016/S0362-546X(02)00269-9. [20] Y.-K. Zou and W.-J. Beyn, On the existence of transversal heteroclinic orbits in discretized dynamical systems, Nonlinearity, 17 (2004), 2275-2292. doi: 10.1088/0951-7715/17/6/014.
 [1] Victoria Rayskin. Homoclinic tangencies in $R^n$. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 465-480. doi: 10.3934/dcds.2005.12.465 [2] Vera Ignatenko. Homoclinic and stable periodic solutions for differential delay equations from physiology. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3637-3661. doi: 10.3934/dcds.2018157 [3] Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Unfolding globally resonant homoclinic tangencies. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4013-4030. doi: 10.3934/dcds.2022043 [4] Karsten Matthies. Exponentially small splitting of homoclinic orbits of parabolic differential equations under periodic forcing. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 585-602. doi: 10.3934/dcds.2003.9.585 [5] Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 [6] Maria Carvalho. First homoclinic tangencies in the boundary of Anosov diffeomorphisms. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 765-782. doi: 10.3934/dcds.1998.4.765 [7] Sergey Gonchenko, Ivan Ovsyannikov. Homoclinic tangencies to resonant saddles and discrete Lorenz attractors. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 273-288. doi: 10.3934/dcdss.2017013 [8] Weiyin Fei, Liangjian Hu, Xuerong Mao, Dengfeng Xia. Advances in the truncated Euler–Maruyama method for stochastic differential delay equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2081-2100. doi: 10.3934/cpaa.2020092 [9] Xinfu Chen. Lorenz equations part II: "randomly" rotated homoclinic orbits and chaotic trajectories. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 121-140. doi: 10.3934/dcds.1996.2.121 [10] Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293 [11] Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121 [12] Ting Yang. Homoclinic orbits and chaos in the generalized Lorenz system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1097-1108. doi: 10.3934/dcdsb.2019210 [13] Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128 [14] Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057 [15] Amadeu Delshams, Marina Gonchenko, Sergey V. Gonchenko, J. Tomás Lázaro. Mixed dynamics of 2-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4483-4507. doi: 10.3934/dcds.2018196 [16] Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 [17] Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3629-3650. doi: 10.3934/dcds.2021010 [18] Antonio Pumariño, Joan Carles Tatjer. Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphisms. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 971-1005. doi: 10.3934/dcdsb.2007.8.971 [19] Addolorata Salvatore. Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 778-787. doi: 10.3934/proc.2003.2003.778 [20] Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

2021 Impact Factor: 1.588