June  2011, 31(2): 301-372. doi: 10.3934/dcds.2011.31.301

Exponentially small splitting of separatrices in the perturbed McMillan map

1. 

Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Ed-C3, Jordi Girona, 1-3, 08034 Barcelona

2. 

IMCCE, Observatoire de Paris, 77 Avenue Denfert-Rochereau, 75014 Paris

3. 

Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona

Received  January 2010 Revised  February 2011 Published  June 2011

The McMillan map is a one-parameter family of integrable symplectic maps of the plane, for which the origin is a hyperbolic fixed point with a homoclinic loop, with small Lyapunov exponent when the parameter is small. We consider a perturbation of the McMillan map for which we show that the loop breaks in two invariant curves which are exponentially close one to the other and which intersect transversely along two primary homoclinic orbits. We compute the asymptotic expansion of several quantities related to the splitting, namely the Lazutkin invariant and the area of the lobe between two consecutive primary homoclinic points. Complex matching techniques are in the core of this work. The coefficients involved in the expansion have a resurgent origin, as shown in [14].
Citation: Pau Martín, David Sauzin, Tere M. Seara. Exponentially small splitting of separatrices in the perturbed McMillan map. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 301-372. doi: 10.3934/dcds.2011.31.301
References:
[1]

A. Delshams, V. Gelfreich, À. Jorba and T. M. Seara, Exponentially small splitting of separatrices under fast quasiperiodic forcing, Comm. Math. Phys., 189 (1987), 35-71. doi: 10.1007/s002200050190.

[2]

A. Delshams and P. Gutiérrez, Exponentially small spliting for whiskered tori in Hamiltonian systems: continuation of transverse homoclinic orbits, Discrete Contin. Dyn. Syst., 11 (2004), 757-783. doi: 10.3934/dcds.2004.11.757.

[3]

A. Delshams and R. Ramírez-Ros, Poincaré-Mel'nikov-Arnol'd method for analytic planar maps, Nonlinearity, 9 (1996), 1-26. doi: 10.1088/0951-7715/9/1/001.

[4]

A. Delshams and R. Ramírez-Ros, Exponentially small splitting of separatrices for perturbed integrable standard-like maps, J. Nonlinear Sci., 8 (1998), 317-352. doi: 10.1007/s003329900054.

[5]

A. Delshams and T. M. Seara, Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom, Math. Phys. Electron. J., 3 (1997), 40 pp.

[6]

E. Fontich and C. Simó, Invariant manifolds for near identity differentiable maps and splitting of separatrices, Ergodic Theory Dynam. Systems, 10 (1990), 319-346.

[7]

V. Gelfreich and D. Sauzin, Borel summation and splitting of separatrices for the Hénon map, Ann. Inst. Fourier (Grenoble), 51 (2001), 513-567.

[8]

V. Gelfreich and C. Simó, High-precision computations of divergent asymptotic series and homoclinic phenomena, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 511-536.

[9]

V. G. Gelfreich, A proof of the exponentially small transversality of the separatrices for the standard map, Comm. Math. Phys., 201 (1999), 155-216. doi: 10.1007/s002200050553.

[10]

V. G. Gelfreich, V. F. Lazutkin and M. B. Tabanov, Exponentially small splittings in Hamiltonian systems, Chaos, 1 (1991), 137-142. doi: 10.1063/1.165823.

[11]

V. Hakim and K. Mallick, Exponentially small splitting of separatrices, matching in the complex plane and Borel summation, Nonlinearity, 6 (1993), 57-70. doi: 10.1088/0951-7715/6/1/004.

[12]

V. F. Lazutkin, Splitting of separatrices for the Chirikov standard map, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 300 (Teor. Predst. Din. Sist. Spets. Vyp. 8), 25-55, 285, 2003. Translated from the Russian and with a preface by V. Gelfreich, Workshop on Differential Equations (Saint-Petersburg, 2002).

[13]

P. Lochak, J.-P. Marco and D. Sauzin, On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems, Mem. Amer. Math. Soc., 163 (2003), viii+145.

[14]

P. Martín, D. Sauzin and T. M. Seara, Resurgence of inner solutions for perturbations of the McMillan map, Discrete Contin. Dyn. Syst., 31 (2011), 165-207.

[15]

E. M. McMillan, A problem in the stability of periodic systems, In "Topics in Modern Physics: A Tribute to EU Condon" (W.E. Brittin and Odeabasih eds.), pages 219-244. Colorado Associated University Press, Boulder, CO, 1971.

[16]

C. Olivé, D. Sauzin and T. M. Seara, Resurgence in a Hamilton-Jacobi equation, Ann. Inst. Fourier (Grenoble), 53 (2003), 1185-1235.

[17]

F. W. J. Olver, "Asymptotics and Special Functions," Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics.

[18]

D. Sauzin, A new method for measuring the splitting of invariant manifolds, Ann. Sci. École Norm. Sup., 34 (2001), 159-221.

[19]

J. Scheurle, J. E. Marsden and P. Holmes, Exponentially small estimates for separatrix splittings, In "Asymptotics Beyond All Orders" (La Jolla, CA, 1991), volume 284 of NATO Adv. Sci. Inst. Ser. B Phys., pages 187-195. Plenum, New York, 1991.

[20]

Y. B. Suris, Integrable mappings of standard type, Funktsional. Anal. i Prilozhen., 23 (1989), 84-85.

[21]

Y. B. Suris, On the complex separatrices of some standard-like maps, Nonlinearity, 7 (1994), 1225-1236. doi: 10.1088/0951-7715/7/4/008.

[22]

A. Tovbis, M. Tsuchiya and C. Jaffé, Exponential asymptotic expansions and approximations of the unstable and stable manifolds of singularly perturbed systems with the Hénon map as an example, Chaos, 8 (1998), 665-681. doi: 10.1063/1.166349.

[23]

D. V. Treschev, Splitting of separatrices for a pendulum with rapidly oscillating suspension point, Russian J. Math. Phys., 5 (1997), 63-98.

[24]

J.-C. Yoccoz, Une erreur féconde du mathématicien Henri Poincaré, Gaz. Math., 107 (2006), 19-26.

show all references

References:
[1]

A. Delshams, V. Gelfreich, À. Jorba and T. M. Seara, Exponentially small splitting of separatrices under fast quasiperiodic forcing, Comm. Math. Phys., 189 (1987), 35-71. doi: 10.1007/s002200050190.

[2]

A. Delshams and P. Gutiérrez, Exponentially small spliting for whiskered tori in Hamiltonian systems: continuation of transverse homoclinic orbits, Discrete Contin. Dyn. Syst., 11 (2004), 757-783. doi: 10.3934/dcds.2004.11.757.

[3]

A. Delshams and R. Ramírez-Ros, Poincaré-Mel'nikov-Arnol'd method for analytic planar maps, Nonlinearity, 9 (1996), 1-26. doi: 10.1088/0951-7715/9/1/001.

[4]

A. Delshams and R. Ramírez-Ros, Exponentially small splitting of separatrices for perturbed integrable standard-like maps, J. Nonlinear Sci., 8 (1998), 317-352. doi: 10.1007/s003329900054.

[5]

A. Delshams and T. M. Seara, Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom, Math. Phys. Electron. J., 3 (1997), 40 pp.

[6]

E. Fontich and C. Simó, Invariant manifolds for near identity differentiable maps and splitting of separatrices, Ergodic Theory Dynam. Systems, 10 (1990), 319-346.

[7]

V. Gelfreich and D. Sauzin, Borel summation and splitting of separatrices for the Hénon map, Ann. Inst. Fourier (Grenoble), 51 (2001), 513-567.

[8]

V. Gelfreich and C. Simó, High-precision computations of divergent asymptotic series and homoclinic phenomena, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 511-536.

[9]

V. G. Gelfreich, A proof of the exponentially small transversality of the separatrices for the standard map, Comm. Math. Phys., 201 (1999), 155-216. doi: 10.1007/s002200050553.

[10]

V. G. Gelfreich, V. F. Lazutkin and M. B. Tabanov, Exponentially small splittings in Hamiltonian systems, Chaos, 1 (1991), 137-142. doi: 10.1063/1.165823.

[11]

V. Hakim and K. Mallick, Exponentially small splitting of separatrices, matching in the complex plane and Borel summation, Nonlinearity, 6 (1993), 57-70. doi: 10.1088/0951-7715/6/1/004.

[12]

V. F. Lazutkin, Splitting of separatrices for the Chirikov standard map, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 300 (Teor. Predst. Din. Sist. Spets. Vyp. 8), 25-55, 285, 2003. Translated from the Russian and with a preface by V. Gelfreich, Workshop on Differential Equations (Saint-Petersburg, 2002).

[13]

P. Lochak, J.-P. Marco and D. Sauzin, On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems, Mem. Amer. Math. Soc., 163 (2003), viii+145.

[14]

P. Martín, D. Sauzin and T. M. Seara, Resurgence of inner solutions for perturbations of the McMillan map, Discrete Contin. Dyn. Syst., 31 (2011), 165-207.

[15]

E. M. McMillan, A problem in the stability of periodic systems, In "Topics in Modern Physics: A Tribute to EU Condon" (W.E. Brittin and Odeabasih eds.), pages 219-244. Colorado Associated University Press, Boulder, CO, 1971.

[16]

C. Olivé, D. Sauzin and T. M. Seara, Resurgence in a Hamilton-Jacobi equation, Ann. Inst. Fourier (Grenoble), 53 (2003), 1185-1235.

[17]

F. W. J. Olver, "Asymptotics and Special Functions," Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics.

[18]

D. Sauzin, A new method for measuring the splitting of invariant manifolds, Ann. Sci. École Norm. Sup., 34 (2001), 159-221.

[19]

J. Scheurle, J. E. Marsden and P. Holmes, Exponentially small estimates for separatrix splittings, In "Asymptotics Beyond All Orders" (La Jolla, CA, 1991), volume 284 of NATO Adv. Sci. Inst. Ser. B Phys., pages 187-195. Plenum, New York, 1991.

[20]

Y. B. Suris, Integrable mappings of standard type, Funktsional. Anal. i Prilozhen., 23 (1989), 84-85.

[21]

Y. B. Suris, On the complex separatrices of some standard-like maps, Nonlinearity, 7 (1994), 1225-1236. doi: 10.1088/0951-7715/7/4/008.

[22]

A. Tovbis, M. Tsuchiya and C. Jaffé, Exponential asymptotic expansions and approximations of the unstable and stable manifolds of singularly perturbed systems with the Hénon map as an example, Chaos, 8 (1998), 665-681. doi: 10.1063/1.166349.

[23]

D. V. Treschev, Splitting of separatrices for a pendulum with rapidly oscillating suspension point, Russian J. Math. Phys., 5 (1997), 63-98.

[24]

J.-C. Yoccoz, Une erreur féconde du mathématicien Henri Poincaré, Gaz. Math., 107 (2006), 19-26.

[1]

Amadeu Delshams, Marina Gonchenko, Pere Gutiérrez. Exponentially small asymptotic estimates for the splitting of separatrices to whiskered tori with quadratic and cubic frequencies. Electronic Research Announcements, 2014, 21: 41-61. doi: 10.3934/era.2014.21.41

[2]

Amadeu Delshams, Pere Gutiérrez, Tere M. Seara. Exponentially small splitting for whiskered tori in Hamiltonian systems: flow-box coordinates and upper bounds. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 785-826. doi: 10.3934/dcds.2004.11.785

[3]

Karsten Matthies. Exponentially small splitting of homoclinic orbits of parabolic differential equations under periodic forcing. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 585-602. doi: 10.3934/dcds.2003.9.585

[4]

Amadeu Delshams, Pere Gutiérrez. Exponentially small splitting for whiskered tori in Hamiltonian systems: continuation of transverse homoclinic orbits. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 757-783. doi: 10.3934/dcds.2004.11.757

[5]

Pau Martín, David Sauzin, Tere M. Seara. Resurgence of inner solutions for perturbations of the McMillan map. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 165-207. doi: 10.3934/dcds.2011.31.165

[6]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[7]

Amadeu Delshams, Vassili Gelfreich, Angel Jorba and Tere M. Seara. Lower and upper bounds for the splitting of separatrices of the pendulum under a fast quasiperiodic forcing. Electronic Research Announcements, 1997, 3: 1-10.

[8]

Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421

[9]

Marcel Guardia. Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2829-2859. doi: 10.3934/dcds.2013.33.2829

[10]

Philippe Chartier, Ander Murua, Jesús María Sanz-Serna. A formal series approach to averaging: Exponentially small error estimates. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3009-3027. doi: 10.3934/dcds.2012.32.3009

[11]

Xinsheng Wang, Lin Wang, Yujun Zhu. Formula of entropy along unstable foliations for $C^1$ diffeomorphisms with dominated splitting. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2125-2140. doi: 10.3934/dcds.2018087

[12]

Ciprian Preda, Petre Preda, Adriana Petre. On the asymptotic behavior of an exponentially bounded, strongly continuous cocycle over a semiflow. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1637-1645. doi: 10.3934/cpaa.2009.8.1637

[13]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[14]

Long Wei. Concentrating phenomena in some elliptic Neumann problem: Asymptotic behavior of solutions. Communications on Pure and Applied Analysis, 2008, 7 (4) : 925-946. doi: 10.3934/cpaa.2008.7.925

[15]

Desheng Li, P.E. Kloeden. Robustness of asymptotic stability to small time delays. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1007-1034. doi: 10.3934/dcds.2005.13.1007

[16]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[17]

Samuel Amstutz, Nicolas Van Goethem. Existence and asymptotic results for an intrinsic model of small-strain incompatible elasticity. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3769-3805. doi: 10.3934/dcdsb.2020240

[18]

Fioralba Cakoni, Shari Moskow, Scott Rome. Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast. Inverse Problems and Imaging, 2018, 12 (4) : 971-992. doi: 10.3934/ipi.2018041

[19]

Abdessatar Khelifi, Siwar Saidani. Asymptotic behavior of eigenvalues of the Maxwell system in the presence of small changes in the interface of an inclusion. Communications on Pure and Applied Analysis, 2022, 21 (9) : 2891-2909. doi: 10.3934/cpaa.2022080

[20]

Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic and Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]