\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rates of decay for the wave systems with time dependent damping

Abstract Related Papers Cited by
  • We study the rate of decay of solutions of the wave systems with time dependent nonlinear damping. The damping is modeled by a continuous monotone function without any growth restrictions imposed at the origin and infinity. The decay rate of the energy functional is obtained by solving a nonlinear non-autonomous ODE.
    Mathematics Subject Classification: Primary: 35L05, 35B40; Secondary: 35L70, 35B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim., 51 (2005), 61-105.doi: 10.1007/s00245.

    [2]

    K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM, Control Optim. Calc. Var., 6 (2001), 361-386.doi: 10.1051/cocv:2001114.

    [3]

    V. Barbu, "Analysis and Control of Nonlinear Infinite-dimensional Systems," Academic Press, Inc., Boston, MA, 1993.

    [4]

    M. Bellassoued, Energy decay for the elastic wave equation with a local time-dependent nonlinear damping, Acta Math. Sin., Engl. Ser. 24, 7 (2008), 1175-1192, 1439-7617.doi: 10.1007/s10114-007-6468-2.

    [5]

    L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundart/interior sources and damping, Discrete Contin. Dyn. Syst., 22 (2008), 835-860.doi: 10.3934/dcds.2008.22.835.

    [6]

    M. M. Cavalcanti, V. N. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. of Diff Equa, 236 (2007), 407-459.doi: 10.1016/j.jde.2007.02.004.

    [7]

    I. Chueshov and I. Lasiecka, Long-time dynamics of a semilinear wave equation with nonlinear interior/boundary damping and sources of critical exponents, in "Control Methods in PDE-Dynamical Systems" (Snowbird, Utah 2005), Contemp. Math., vol. 426, AMS, Providence, RI, 2007, 153-193.

    [8]

    M. Daoulatli, I. Lasiecka and D. Toundykov, Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 67-94.doi: 10.3934/dcdss.2009.2.67.

    [9]

    A. Elbert, Stability of some difference equations, Advances in Difference Equations, (Veszprém, 1995), Gordon and Breach, Amsterdam, 1997, pp. 165-187.

    [10]

    G. Fragnelli and D. Mugnai, Stability of solutions for some classes of nonlinear damped wave equations, SIAM J. Control Optim., 47 (2008), 2520-2539.doi: 10.1137/070689735.

    [11]

    L. Hatvani and T. Krisztin, Necessary and sufficient conditions for intermittent stabilization of linear oscillators by large damping, Differential Integral Equations, 10 (1997), 265-272.

    [12]

    A. Haraux, Semi-linear hyperbolic problems in bounded domains, Math. Rep., 3 (1987).

    [13]

    A. Haraux, Une remarque sur la stabilisation de certains systémes du deuxiéme ordre en temps, Portugal Math., 46 (1989), 245-258.

    [14]

    H. Koch and I. Lasiecka, Hadamard wellposedness of weak solutions in nonlinear dynamic elasticity-full von Karman system, Progress in Nonlinear PDE's, and their Applications, 50 (2002), 197-206.

    [15]

    V. Komornik, "Exact Controllability and Stabilization," The Multiplier Method, Collection RMA, Masson-Wiley, Paris, 1994.

    [16]

    I. Lasiecka and D. Tataru, Uniform boundary stabilization of semi-linear wave equation with nonlinear boundary dissipation, Differential Integral Equations, 6 (1993), 507-533.

    [17]

    I. Lasiecka and D. Toundykov, Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms, Nonlinear Anal., 64 (2006), 1757-1797.doi: 10.1016/j.na.2005.07.024.

    [18]

    I. Lasiecka and D. Toundykov, Stability of higher-level energy norms of strong solutions to a wave equation with localized nonlinear damping and a nonlinear source term, Control and Cybernetics, 36 (2007), 681-710.

    [19]

    J. L. Lions and W. A. Strauss, Some non-linear evolution equations, Bull SMF, 93 (1965), 43-96.

    [20]

    W. Liu and E. Zuazua, Decay rates for dissipative wave equations, Ric. Mat., 48 (1999) Suppl., 61-75.

    [21]

    P. Martinez, Precise decay rate estimates for time-dependent dissipative systems, Isr. J. Math., 119 (2000), 291-324.doi: 10.1007/BF02810672.

    [22]

    P. Martinez and J. Vancostenoble, Optimality of energy estimates for the wave equation with nonlinear boundary velocity damping, SIAM J. Control Optim., 39 (2000), 776-797.doi: 10.1137/S0363012999354211.

    [23]

    M. Nakao, On the decay of solutions of the wave equation with a local time-dependent nonlinear dissipation, Adv. Math. Sci. Appl., 7 (1997), 317-331.

    [24]

    P. Pucci and J. Serrin, Asymptotic stability for non-autonomous damped wave systems, Comm. Pure Appl. Math., 49 (1996), 177-216.doi: 10.1002/(SICI)1097-0312(199602)49:2<177::AID-CPA3>3.0.CO;2-B.

    [25]

    M. Slemrod, Weak asymptotic decay via a Relaxed invariance principle for a wave equation with nonlinear, monotone damping, Proc. Royal Soc. Edinberg Sect. A, 113 (1989), 87-97.

    [26]

    E. Zuazua, Stability and decay for a class of nonlinear hyperbolic problems, Asym Ana, 1 (1988), 161-185.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return