-
Previous Article
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data
- DCDS Home
- This Issue
-
Next Article
Topological pressure and topological entropy of a semigroup of maps
On some exotic Schottky groups
1. | Laboratoire de Mathématiques et Physique Théorique, Université Fran¸cois-Rabelais Tours, Fédération Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours, France |
References:
[1] |
M. Babillot and M. Peigné, Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps, Bull. Soc. Math. France, 134 (2006), 119-163. |
[2] |
M. Bourdon, Structure conforme au bord et flot géodésique d'un CAT(-1)-espace, Enseign. Math., 41 (1995), 63-102. |
[3] |
K. Corlette and A. Iozzi, Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Amer. Math. Soc., 351 (1999), 1507-1530.
doi: 10.1090/S0002-9947-99-02113-3. |
[4] |
F. Dal'bo, J.-P. Otal and M. Peigné, Séries de Poincaré des groupes géométriquement finis, Israel Jour. Math., 118 (2000), 109-124. |
[5] |
F. Dal'bo, M. Peigné, J. C. Picaud and A. Sambusetti, On the growth of non-uniform lattices in pinched negatively curved manifolds, J. Reine Angew. Math., 627 (2009), 31-52. |
[6] |
P. Eberlein, "Geometry of Non Positively Curved Manifolds,", Chicago Lectures in Mathematics., ().
|
[7] |
E. Ghys and P. de la Harpe, "Sur les groupes hyperboliques d'aprés Mickael Gromov (Bern 1988)" Progress Math., 83, Birkhäuser Boston, Boston, MA, 1990. |
[8] |
V. Kaïmanovitch, Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds, Ann. IHP., 53 (1900), 361-393. |
[9] |
J. P. Otal and M. Peigné, Principe variationnel et groupes kleiniens, Duke Math. Journal, 125 (2004), 15-44.
doi: 10.1215/S0012-7094-04-12512-6. |
[10] |
M. Peigné, On the Patterson-Sullivan measure of some discrete group of isometries, Israel J. Math., 133 (2003), 77-88.
doi: 10.1007/BF02773062. |
[11] |
J. G. Ratcliffe, "Foundations of Hyperbolic Manifolds," 2nd Edition, Graduate Texts in Math. 149, Springer-Verlag, New York, 2006, 779 pages. |
[12] |
Th. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.), 95 (2003). |
[13] |
B. Schapira, "Propriétés ergodiques du feuilletage horosphérique d'une variété à courbure négative," Ph.D thesis, Université d'Orléans, 2003, http://www.univ-orleans.fr/mapmo/publications/theses/SCHAPIRATHE.ps. |
[14] |
D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 171-202. |
[15] |
D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., 153 (1984), 259-277.
doi: 10.1007/BF02392379. |
[16] |
C. Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc., 348 (1996), 4965-5005.
doi: 10.1090/S0002-9947-96-01614-5. |
show all references
References:
[1] |
M. Babillot and M. Peigné, Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps, Bull. Soc. Math. France, 134 (2006), 119-163. |
[2] |
M. Bourdon, Structure conforme au bord et flot géodésique d'un CAT(-1)-espace, Enseign. Math., 41 (1995), 63-102. |
[3] |
K. Corlette and A. Iozzi, Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Amer. Math. Soc., 351 (1999), 1507-1530.
doi: 10.1090/S0002-9947-99-02113-3. |
[4] |
F. Dal'bo, J.-P. Otal and M. Peigné, Séries de Poincaré des groupes géométriquement finis, Israel Jour. Math., 118 (2000), 109-124. |
[5] |
F. Dal'bo, M. Peigné, J. C. Picaud and A. Sambusetti, On the growth of non-uniform lattices in pinched negatively curved manifolds, J. Reine Angew. Math., 627 (2009), 31-52. |
[6] |
P. Eberlein, "Geometry of Non Positively Curved Manifolds,", Chicago Lectures in Mathematics., ().
|
[7] |
E. Ghys and P. de la Harpe, "Sur les groupes hyperboliques d'aprés Mickael Gromov (Bern 1988)" Progress Math., 83, Birkhäuser Boston, Boston, MA, 1990. |
[8] |
V. Kaïmanovitch, Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds, Ann. IHP., 53 (1900), 361-393. |
[9] |
J. P. Otal and M. Peigné, Principe variationnel et groupes kleiniens, Duke Math. Journal, 125 (2004), 15-44.
doi: 10.1215/S0012-7094-04-12512-6. |
[10] |
M. Peigné, On the Patterson-Sullivan measure of some discrete group of isometries, Israel J. Math., 133 (2003), 77-88.
doi: 10.1007/BF02773062. |
[11] |
J. G. Ratcliffe, "Foundations of Hyperbolic Manifolds," 2nd Edition, Graduate Texts in Math. 149, Springer-Verlag, New York, 2006, 779 pages. |
[12] |
Th. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.), 95 (2003). |
[13] |
B. Schapira, "Propriétés ergodiques du feuilletage horosphérique d'une variété à courbure négative," Ph.D thesis, Université d'Orléans, 2003, http://www.univ-orleans.fr/mapmo/publications/theses/SCHAPIRATHE.ps. |
[14] |
D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 171-202. |
[15] |
D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., 153 (1984), 259-277.
doi: 10.1007/BF02392379. |
[16] |
C. Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc., 348 (1996), 4965-5005.
doi: 10.1090/S0002-9947-96-01614-5. |
[1] |
Xin Zhang. The gap distribution of directions in some Schottky groups. Journal of Modern Dynamics, 2017, 11: 477-499. doi: 10.3934/jmd.2017019 |
[2] |
Ludovic Rifford. Ricci curvatures in Carnot groups. Mathematical Control and Related Fields, 2013, 3 (4) : 467-487. doi: 10.3934/mcrf.2013.3.467 |
[3] |
Sergei V. Ivanov. On aspherical presentations of groups. Electronic Research Announcements, 1998, 4: 109-114. |
[4] |
Benjamin Weiss. Entropy and actions of sofic groups. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3375-3383. doi: 10.3934/dcdsb.2015.20.3375 |
[5] |
Neal Koblitz, Alfred Menezes. Another look at generic groups. Advances in Mathematics of Communications, 2007, 1 (1) : 13-28. doi: 10.3934/amc.2007.1.13 |
[6] |
Robert McOwen, Peter Topalov. Groups of asymptotic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6331-6377. doi: 10.3934/dcds.2016075 |
[7] |
Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725 |
[8] |
Hans Ulrich Besche, Bettina Eick and E. A. O'Brien. The groups of order at most 2000. Electronic Research Announcements, 2001, 7: 1-4. |
[9] |
Światosław R. Gal, Jarek Kędra. On distortion in groups of homeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 609-622. doi: 10.3934/jmd.2011.5.609 |
[10] |
Paul Skerritt, Cornelia Vizman. Dual pairs for matrix groups. Journal of Geometric Mechanics, 2019, 11 (2) : 255-275. doi: 10.3934/jgm.2019014 |
[11] |
Uri Bader, Alex Furman. Boundaries, Weyl groups, and Superrigidity. Electronic Research Announcements, 2012, 19: 41-48. doi: 10.3934/era.2012.19.41 |
[12] |
Javier Pérez Álvarez. Invariant structures on Lie groups. Journal of Geometric Mechanics, 2020, 12 (2) : 141-148. doi: 10.3934/jgm.2020007 |
[13] |
Martin Kassabov. Symmetric groups and expanders. Electronic Research Announcements, 2005, 11: 47-56. |
[14] |
André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351 |
[15] |
Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517 |
[16] |
Elon Lindenstrauss. Pointwise theorems for amenable groups. Electronic Research Announcements, 1999, 5: 82-90. |
[17] |
Emmanuel Breuillard, Ben Green, Terence Tao. Linear approximate groups. Electronic Research Announcements, 2010, 17: 57-67. doi: 10.3934/era.2010.17.57 |
[18] |
Eduard Duryev, Charles Fougeron, Selim Ghazouani. Dilation surfaces and their Veech groups. Journal of Modern Dynamics, 2019, 14: 121-151. doi: 10.3934/jmd.2019005 |
[19] |
Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191 |
[20] |
David Mieczkowski. The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory. Journal of Modern Dynamics, 2007, 1 (1) : 61-92. doi: 10.3934/jmd.2007.1.61 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]