-
Previous Article
Spectral analysis for transition front solutions in Cahn-Hilliard systems
- DCDS Home
- This Issue
-
Next Article
Lefschetz sequences and detecting periodic points
Traveling wave solution for a lattice dynamical system with convolution type nonlinearity
1. | Department of Mathematics, Tamkang University, 151, Ying-Chuan Road, Tamsui, Taipei County 25137 |
2. | Department of Mathematics, National Taiwan Normal University, 88, S-4, Ting Chou Road, Taipei 11677, Taiwan |
References:
[1] |
P. W. Bates, P. C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[2] |
P. W. Bates, X. Chen and A. Chmaj, Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal., 35 (2003), 520-546.
doi: 10.1137/S0036141000374002. |
[3] |
J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[4] |
X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Advances in Differential Equations, 2 (1997), 125-160. |
[5] |
X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258.
doi: 10.1137/050627824. |
[6] |
X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (2002), 549-569. |
[7] |
X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.
doi: 10.1007/s00208-003-0414-0. |
[8] |
J. Coville and L. Dupaigne, Travelling fronts in integrodifferential equations, C. R. Math. Acad. Sci. Paris, 337 (2003), 25-30. |
[9] |
J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations, Nonlinear Anal., 60 (2005), 797-819.
doi: 10.1016/j.na.2003.10.030. |
[10] |
J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727-755.
doi: 10.1017/S0308210504000721. |
[11] |
S.-C. Fu, J.-S. Guo and S.-Y. Shieh, Traveling wave solutions for some discrete quasilinear parabolic equations, Nonlinear Analysis Series A, 48 (2002), 1137-1149.
doi: 10.1016/S0362-546X(00)00242-X. |
[12] |
W. Hudson and B. Zinner, Existence of traveling waves for reaction diffusion equations of Fisher type in periodic media, World Sci. Publ., 1 (1995), 187-199. |
[13] |
G. Lv, Asymptotic behavior of traveling fronts and entire solutions for a nonlinear monostable equation, Nonlinear Analysis, 72 (2010), 3659-3668.
doi: 10.1016/j.na.2009.12.047. |
[14] |
S. Ma and X. Zou, Existence, uniqueness and stability of traveling waves in a discrete reaction-diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54-87. |
[15] |
S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction, J. Differential Equations, 212 (2005), 129-190. |
[16] |
S. Ma, P. Weng and X. Zou, Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation, Nonlinear Analysis, 65 (2006), 1858-1890.
doi: 10.1016/j.na.2005.10.042. |
[17] |
K. Schumacher, Travelling-front solutions for integro-differential equations, J. Reine Angew. Math., 316 (1980), 54-70.
doi: 10.1515/crll.1980.316.54. |
[18] |
P. Weng, H. Huang and J. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction, IMA J. Appl. Math., 68 (2003), 409-439.
doi: 10.1093/imamat/68.4.409. |
[19] |
B. Zinner, Stability of traveling wavefronts for the discrete Nagumo equation, SIAM J. Math. Anal., 22 (1991), 1016-1020.
doi: 10.1137/0522066. |
[20] |
B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation, J. Differential Equations, 96 (1992), 1-27. |
[21] |
B. Zinner, G. Harris and W. Hudson, Traveling wavefronts for the discrete Fisher's equation, J. Differential Equations, 105 (1993), 46-62. |
show all references
References:
[1] |
P. W. Bates, P. C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[2] |
P. W. Bates, X. Chen and A. Chmaj, Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal., 35 (2003), 520-546.
doi: 10.1137/S0036141000374002. |
[3] |
J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[4] |
X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Advances in Differential Equations, 2 (1997), 125-160. |
[5] |
X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258.
doi: 10.1137/050627824. |
[6] |
X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (2002), 549-569. |
[7] |
X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.
doi: 10.1007/s00208-003-0414-0. |
[8] |
J. Coville and L. Dupaigne, Travelling fronts in integrodifferential equations, C. R. Math. Acad. Sci. Paris, 337 (2003), 25-30. |
[9] |
J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations, Nonlinear Anal., 60 (2005), 797-819.
doi: 10.1016/j.na.2003.10.030. |
[10] |
J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727-755.
doi: 10.1017/S0308210504000721. |
[11] |
S.-C. Fu, J.-S. Guo and S.-Y. Shieh, Traveling wave solutions for some discrete quasilinear parabolic equations, Nonlinear Analysis Series A, 48 (2002), 1137-1149.
doi: 10.1016/S0362-546X(00)00242-X. |
[12] |
W. Hudson and B. Zinner, Existence of traveling waves for reaction diffusion equations of Fisher type in periodic media, World Sci. Publ., 1 (1995), 187-199. |
[13] |
G. Lv, Asymptotic behavior of traveling fronts and entire solutions for a nonlinear monostable equation, Nonlinear Analysis, 72 (2010), 3659-3668.
doi: 10.1016/j.na.2009.12.047. |
[14] |
S. Ma and X. Zou, Existence, uniqueness and stability of traveling waves in a discrete reaction-diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54-87. |
[15] |
S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction, J. Differential Equations, 212 (2005), 129-190. |
[16] |
S. Ma, P. Weng and X. Zou, Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation, Nonlinear Analysis, 65 (2006), 1858-1890.
doi: 10.1016/j.na.2005.10.042. |
[17] |
K. Schumacher, Travelling-front solutions for integro-differential equations, J. Reine Angew. Math., 316 (1980), 54-70.
doi: 10.1515/crll.1980.316.54. |
[18] |
P. Weng, H. Huang and J. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction, IMA J. Appl. Math., 68 (2003), 409-439.
doi: 10.1093/imamat/68.4.409. |
[19] |
B. Zinner, Stability of traveling wavefronts for the discrete Nagumo equation, SIAM J. Math. Anal., 22 (1991), 1016-1020.
doi: 10.1137/0522066. |
[20] |
B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation, J. Differential Equations, 96 (1992), 1-27. |
[21] |
B. Zinner, G. Harris and W. Hudson, Traveling wavefronts for the discrete Fisher's equation, J. Differential Equations, 105 (1993), 46-62. |
[1] |
Chin-Chin Wu. Monotonicity and uniqueness of wave profiles for a three components lattice dynamical system. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2813-2827. doi: 10.3934/dcds.2017121 |
[2] |
Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107 |
[3] |
Cui-Ping Cheng, Ruo-Fan An. Global stability of traveling wave fronts in a two-dimensional lattice dynamical system with global interaction. Electronic Research Archive, 2021, 29 (5) : 3535-3550. doi: 10.3934/era.2021051 |
[4] |
Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure and Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006 |
[5] |
Aaron Hoffman, Benjamin Kennedy. Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 137-167. doi: 10.3934/dcds.2011.30.137 |
[6] |
Jibin Li, Yi Zhang. On the traveling wave solutions for a nonlinear diffusion-convection equation: Dynamical system approach. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1119-1138. doi: 10.3934/dcdsb.2010.14.1119 |
[7] |
E. S. Van Vleck, Aijun Zhang. Competing interactions and traveling wave solutions in lattice differential equations. Communications on Pure and Applied Analysis, 2016, 15 (2) : 457-475. doi: 10.3934/cpaa.2016.15.457 |
[8] |
Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001 |
[9] |
Cheng-Hsiung Hsu, Jian-Jhong Lin. Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1483-1508. doi: 10.3934/cpaa.2019071 |
[10] |
Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126 |
[11] |
Caibin Zeng, Xiaofang Lin, Jianhua Huang, Qigui Yang. Pathwise solution to rough stochastic lattice dynamical system driven by fractional noise. Communications on Pure and Applied Analysis, 2020, 19 (2) : 811-834. doi: 10.3934/cpaa.2020038 |
[12] |
Shi-Liang Wu, Cheng-Hsiung Hsu. Entire solutions with merging fronts to a bistable periodic lattice dynamical system. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2329-2346. doi: 10.3934/dcds.2016.36.2329 |
[13] |
Fang-Di Dong, Wan-Tong Li, Li Zhang. Entire solutions in a two-dimensional nonlocal lattice dynamical system. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2517-2545. doi: 10.3934/cpaa.2018120 |
[14] |
Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899 |
[15] |
Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197 |
[16] |
Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659 |
[17] |
Cheng-Hsiung Hsu, Ting-Hui Yang. Traveling plane wave solutions of delayed lattice differential systems in competitive Lotka-Volterra type. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 111-128. doi: 10.3934/dcdsb.2010.14.111 |
[18] |
Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129 |
[19] |
Guangying Lv, Mingxin Wang. Existence, uniqueness and stability of traveling wave fronts of discrete quasi-linear equations with delay. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 415-433. doi: 10.3934/dcdsb.2010.13.415 |
[20] |
Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]