March  2012, 32(3): 1047-1053. doi: 10.3934/dcds.2012.32.1047

Recurrence in generic staircases

1. 

Aix-Marseille University, Centre de physique théorique, Fédération de Recherches des Unités de Mathématique de Marseille, and Institut de mathématiques de Luminy, Luminy, Case 907, F-13288 Marseille Cedex 9, France

Received  October 2010 Revised  October 2010 Published  October 2011

The straight-line flow on almost every staircase and on almost every square tiled staircase is recurrent. For almost every square tiled staircase the set of periodic orbits is dense in the phase space.
Citation: Serge Troubetzkoy. Recurrence in generic staircases. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1047-1053. doi: 10.3934/dcds.2012.32.1047
References:
[1]

G. Cristadoro, M. Lenci and M. Seri, Recurrence for quenched random Lorentz tubes,, preprint, (). 

[2]

E. Gutkin and S. Troubetzkoy, Directional flows and strong recurrence for polygonal billiards, in "International Conference of Dynamical Systems" (Montevideo, 1995) (eds. F. Ledrappier, et al.), Pitman Res. Notes Math. Ser., 362, Longman, Harlow, (1996), 21-45.

[3]

W. P. Hooper, Dynamics on an infinite surface with the lattice property,, \arXiv{0802.0189}., (). 

[4]

W. P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry,, preprint, (). 

[5]

P. Hubert and B. Weiss, Dynamics on an infinite staircase, preprint, 2008.

[6]

P. Hubert and G. Schmithüsen, Infinite translation surface with infinitely generated Veech groups,, 2009., (). 

[7]

P. Hubert, S. Lelievre and S. Troubetzkoy, On the Ehrenfest wind-tree model: Periodic directions, recurrence, diffusion,, preprint, (). 

[8]

S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Annals of Math., 124 (1986), 293-311.

[9]

, M. Lenci and S. Troubetzkoy,, in preparation., (). 

[10]

Ǐ. Schmeling and S. Troubetzkoǐ, Inhomogeneous Diophantine approximation and angular recurrence for billiards in polygons, Sb. Math. 194 (2003), 295-309. doi: 10.1070/SM2003v194n02ABEH000717.

[11]

K. Schmidt, "Cocyles on Ergodic Transformation Groups," Macmillan Lectures in Mathematics, Vol. 1., Macmillan Company on India, Ltd., Delhi, 1977.

[12]

S. Troubetzkoy, Recurrence and periodic billiard orbits in polygons, Regul. Chaotic Dyn., 9 (2004), 1-12. doi: 10.1070/RD2004v009n01ABEH000259.

[13]

S. Troubetzkoy, Typical recurrence for the Ehrenfest wind-tree model, Journal of Statistical Physics, 141 (2010), 60-67. doi: 10.1007/s10955-010-0026-5.

[14]

W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583. doi: 10.1007/BF01388890.

show all references

References:
[1]

G. Cristadoro, M. Lenci and M. Seri, Recurrence for quenched random Lorentz tubes,, preprint, (). 

[2]

E. Gutkin and S. Troubetzkoy, Directional flows and strong recurrence for polygonal billiards, in "International Conference of Dynamical Systems" (Montevideo, 1995) (eds. F. Ledrappier, et al.), Pitman Res. Notes Math. Ser., 362, Longman, Harlow, (1996), 21-45.

[3]

W. P. Hooper, Dynamics on an infinite surface with the lattice property,, \arXiv{0802.0189}., (). 

[4]

W. P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry,, preprint, (). 

[5]

P. Hubert and B. Weiss, Dynamics on an infinite staircase, preprint, 2008.

[6]

P. Hubert and G. Schmithüsen, Infinite translation surface with infinitely generated Veech groups,, 2009., (). 

[7]

P. Hubert, S. Lelievre and S. Troubetzkoy, On the Ehrenfest wind-tree model: Periodic directions, recurrence, diffusion,, preprint, (). 

[8]

S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Annals of Math., 124 (1986), 293-311.

[9]

, M. Lenci and S. Troubetzkoy,, in preparation., (). 

[10]

Ǐ. Schmeling and S. Troubetzkoǐ, Inhomogeneous Diophantine approximation and angular recurrence for billiards in polygons, Sb. Math. 194 (2003), 295-309. doi: 10.1070/SM2003v194n02ABEH000717.

[11]

K. Schmidt, "Cocyles on Ergodic Transformation Groups," Macmillan Lectures in Mathematics, Vol. 1., Macmillan Company on India, Ltd., Delhi, 1977.

[12]

S. Troubetzkoy, Recurrence and periodic billiard orbits in polygons, Regul. Chaotic Dyn., 9 (2004), 1-12. doi: 10.1070/RD2004v009n01ABEH000259.

[13]

S. Troubetzkoy, Typical recurrence for the Ehrenfest wind-tree model, Journal of Statistical Physics, 141 (2010), 60-67. doi: 10.1007/s10955-010-0026-5.

[14]

W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583. doi: 10.1007/BF01388890.

[1]

Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1

[2]

Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209

[3]

José A. Conejero, Alfredo Peris. Chaotic translation semigroups. Conference Publications, 2007, 2007 (Special) : 269-276. doi: 10.3934/proc.2007.2007.269

[4]

Chihurn Kim, Dong Han Kim. On the law of logarithm of the recurrence time. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 581-587. doi: 10.3934/dcds.2004.10.581

[5]

Petr Kůrka, Vincent Penné, Sandro Vaienti. Dynamically defined recurrence dimension. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 137-146. doi: 10.3934/dcds.2002.8.137

[6]

Michael Blank. Recurrence for measurable semigroup actions. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1649-1665. doi: 10.3934/dcds.2020335

[7]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[8]

Milton Ko. Rényi entropy and recurrence. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2403-2421. doi: 10.3934/dcds.2013.33.2403

[9]

Miguel Abadi, Sandro Vaienti. Large deviations for short recurrence. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 729-747. doi: 10.3934/dcds.2008.21.729

[10]

Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004

[11]

Jie Li, Kesong Yan, Xiangdong Ye. Recurrence properties and disjointness on the induced spaces. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1059-1073. doi: 10.3934/dcds.2015.35.1059

[12]

Rafael De La Llave, A. Windsor. An application of topological multiple recurrence to tiling. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 315-324. doi: 10.3934/dcdss.2009.2.315

[13]

A. Gasull, Víctor Mañosa, Xavier Xarles. Rational periodic sequences for the Lyness recurrence. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 587-604. doi: 10.3934/dcds.2012.32.587

[14]

Pascal Hubert, Gabriela Schmithüsen. Infinite translation surfaces with infinitely generated Veech groups. Journal of Modern Dynamics, 2010, 4 (4) : 715-732. doi: 10.3934/jmd.2010.4.715

[15]

Jean René Chazottes, F. Durand. Local rates of Poincaré recurrence for rotations and weak mixing. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 175-183. doi: 10.3934/dcds.2005.12.175

[16]

Vincent Penné, Benoît Saussol, Sandro Vaienti. Dimensions for recurrence times: topological and dynamical properties. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 783-798. doi: 10.3934/dcds.1999.5.783

[17]

Piotr Oprocha. Chain recurrence in multidimensional time discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1039-1056. doi: 10.3934/dcds.2008.20.1039

[18]

Benoît Saussol. Recurrence rate in rapidly mixing dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 259-267. doi: 10.3934/dcds.2006.15.259

[19]

Ethan M. Ackelsberg. Rigidity, weak mixing, and recurrence in abelian groups. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1669-1705. doi: 10.3934/dcds.2021168

[20]

L'ubomír Snoha, Vladimír Špitalský. Recurrence equals uniform recurrence does not imply zero entropy for triangular maps of the square. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 821-835. doi: 10.3934/dcds.2006.14.821

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]