Citation: |
[1] |
M. Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geom. Topol., 11 (2007), 1887-2073.doi: 10.2140/gt.2007.11.1887. |
[2] |
É. Ghys, Topologie des feuilles génériques, Ann. of Math. (2), 141 (1995), 387-422.doi: 10.2307/2118526. |
[3] |
E. Gutkin and S. Troubetzkoy, Directional flows and strong recurrence for polygonal billiards, in "International Conference on Dynamical Systems" (Montevideo, 1995), 21-45, Pitman Res. Notes Math. Ser., 362, Longman, Harlow, 1996. |
[4] |
P. Hooper, Dynamics on an infinite surface with the lattice property, preprint, arXiv:0802.0189. |
[5] |
P. Hooper and B. Weiss, Generalized staircases: recurrence and symmetry, To appear in Annales de l'Institut Fourier, 2009. |
[6] |
P Hooper, P. Hubert and B. Weiss, Dynamics on the infinite staircase surface, To appear in Dis. Cont. Dyn. Sys., 2010. |
[7] |
P. Hubert and G. Schmithüsen, Infinite translation surfaces with infinitely generated Veech groups, Journal of Modern Dynamics, 4 (2010), 715-732.doi: 10.3934/jmd.2010.4.715. |
[8] |
A. B. Katok, The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys., 111 (1987), 151-160.doi: 10.1007/BF01239021. |
[9] |
H. Masur and S. Tabachnikov, Rational billiards and flat structures, in "Handbook of Dynamical Systems," Vol. 1A, 1015-1089, North Holland, Amsterdam, 2002. |
[10] |
P. Przytycki, F. Valdez and G. Weitze-Schmithüsen, Veech groups of Loch Ness monsters, To appear in Annales de l'Institut Fourier, 2009. |
[11] |
F. Valdez, Infinite genus surfaces and irrational polygonal billiards, Geom. Dedicata, 143 (2009), 143-154.doi: 10.1007/s10711-009-9378-x. |
[12] |
S. Tabachnikov, Billiards, Panor. Synth. No., 1 (1995), vi+142 pp. |
[13] |
W. A. Veech, Teichmüller curves in the moduli space, Eisenstein series and an application to triangular billiards, Inventiones Mathematicae, 97 (1989), 553-583.doi: 10.1007/BF01388890. |