\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Veech groups, irrational billiards and stable abelian differentials

Abstract Related Papers Cited by
  • We describe Veech groups of flat surfaces arising from irrational angled polygonal billiards or irreducible stable abelian differentials. For irrational polygonal billiards, we prove that these groups are non-discrete subgroups of $\rm SO(2,\mathbf{R})$ and we calculate their rank.
    Mathematics Subject Classification: Primary: 37D50; Secondary: 37J35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geom. Topol., 11 (2007), 1887-2073.doi: 10.2140/gt.2007.11.1887.

    [2]

    É. Ghys, Topologie des feuilles génériques, Ann. of Math. (2), 141 (1995), 387-422.doi: 10.2307/2118526.

    [3]

    E. Gutkin and S. Troubetzkoy, Directional flows and strong recurrence for polygonal billiards, in "International Conference on Dynamical Systems" (Montevideo, 1995), 21-45, Pitman Res. Notes Math. Ser., 362, Longman, Harlow, 1996.

    [4]

    P. HooperDynamics on an infinite surface with the lattice property, preprint, arXiv:0802.0189.

    [5]

    P. Hooper and B. Weiss, Generalized staircases: recurrence and symmetry, To appear in Annales de l'Institut Fourier, 2009.

    [6]

    P Hooper, P. Hubert and B. Weiss, Dynamics on the infinite staircase surface, To appear in Dis. Cont. Dyn. Sys., 2010.

    [7]

    P. Hubert and G. Schmithüsen, Infinite translation surfaces with infinitely generated Veech groups, Journal of Modern Dynamics, 4 (2010), 715-732.doi: 10.3934/jmd.2010.4.715.

    [8]

    A. B. Katok, The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys., 111 (1987), 151-160.doi: 10.1007/BF01239021.

    [9]

    H. Masur and S. Tabachnikov, Rational billiards and flat structures, in "Handbook of Dynamical Systems," Vol. 1A, 1015-1089, North Holland, Amsterdam, 2002.

    [10]

    P. Przytycki, F. Valdez and G. Weitze-Schmithüsen, Veech groups of Loch Ness monsters, To appear in Annales de l'Institut Fourier, 2009.

    [11]

    F. Valdez, Infinite genus surfaces and irrational polygonal billiards, Geom. Dedicata, 143 (2009), 143-154.doi: 10.1007/s10711-009-9378-x.

    [12]

    S. Tabachnikov, Billiards, Panor. Synth. No., 1 (1995), vi+142 pp.

    [13]

    W. A. Veech, Teichmüller curves in the moduli space, Eisenstein series and an application to triangular billiards, Inventiones Mathematicae, 97 (1989), 553-583.doi: 10.1007/BF01388890.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return