Citation: |
[1] |
J. Aarts and F. Daalderop, Chaotic homeomorphisms on manifolds, Topology Appl., 96 (1999), 93-96.doi: 10.1016/S0166-8641(98)00041-8. |
[2] |
F. Abdenur, C. Bonatti and S. Crovisier, Nonuniform hyperbolicity of $C^1$ generic diffeomorphisms, to appear in Israel Journal of Mathematics. |
[3] |
S. Alpern and V. Prasad, "Typical Dynamics of Volume Preserving Homeomorphisms," Cambridge Tracts in Mathematics, 139, Cambridge University Press, Cambridge, 2000. |
[4] |
S. Alpern and V. Prasad, Properties generic for Lebesgue space automorphisms are generic for measure-preserving manifold homeomorphisms, Ergod. Th. & Dynam. Sys., 22 (2002), 1587-1620. |
[5] |
E. Akin, M. Hurley and J. Kennedy, Dynamics of topologically generic homeomorphisms, Mem. Amer. Math. Soc., 164 (2003), viii+130 pp. |
[6] |
A. Arbieto and J. Bochi, $L^p$-generic cocycles have one-point Lyapunov spectrum, Stochastics and Dynamics, 3 (2003), 73-81.doi: 10.1142/S0219493703000619. |
[7] |
A. Arbieto and C. Matheus, A pasting lemma and some applications for conservative systems, Ergodic Theory Dynam. Systems, 27 (2007), 1399-1417. |
[8] |
L. Arnold and N. D. Cong, Linear cocycles with simple Lyapunov spectrum are dense in $L^{\infty}$, Ergod. Th. & Dynam. Sys., 19 (1999), 1389-1404. |
[9] |
V. I. Arnold, "Mathematical Methods of Classical Mechanics," Graduate Texts in Mathematics, 60, Springer Verlag, New York-Heidelberg, 1978. |
[10] |
S. Baldwin and E. Slaminka, A stable/unstable "manifold" theorem for area preserving homeomorphisms of two manifolds, Proc. Amer. Math. Soc., 109 (1990), 823-828. |
[11] |
J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacy, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334.doi: 10.2307/2324899. |
[12] |
L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergod. Th. & Dynam. Sys., 16 (1996), 871-927. |
[13] |
L. Barreira and Y. Pesin, "Lectures on Lyapunov Exponents and Smooth Ergodic Theory," Proc. Sympos. Pure Math., 69, Smooth Ergotic Theory and its Applications (Seattle, WA, 1999), 3-106, Amer. Math. Soc., Providence, RI, 2001. |
[14] |
L. Barreira and C. Silva, Lyapunov exponents for continuous transformations and dimension theory, Discrete Contin. Dyn. Syst., 13 (2005), 469-490.doi: 10.3934/dcds.2005.13.469. |
[15] |
J. Bochi, Genericity of zero Lyapunov exponents, Ergod. Th. & Dynam. Sys., 22 (2002), 1667-1696. |
[16] |
J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic maps, Ann. of Math. (2), 161 (2005), 1423-1485. |
[17] |
C. Bonatti, L. J. Díaz and M. Viana, "Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective," Encycl. of Math. Sc., 102, Math. Phys., III, Springer-Verlag, Berlin, 2005. |
[18] |
D. Bylov, R. Vinograd, D. Grobman and V. Nemyckiĭ , "Theory of Lyapunov Exponents and its Application to Problems of Stability,'' in Russian, Izdat. "Nauka,'' Moscow, 1966. |
[19] |
F. Daalderop and R. Fokkink, Chaotic homeomorphisms are generic, Topology Appl., 102 (2000), 297-302.doi: 10.1016/S0166-8641(98)00155-2. |
[20] |
M. K. Fort, Category theorems, Fund. Math., 42 (1955), 276-288. |
[21] |
M. Hurley, On proofs of the $C^0$ general density theorem, Proc. Amer. Math. Soc., 124 (1996), 1305-1309.doi: 10.1090/S0002-9939-96-03184-X. |
[22] |
A. Katok, Bernoulli diffeomorphisms on surfaces, Ann. of Math. (2), 110 (1979), 529-547.doi: 10.2307/1971237. |
[23] |
P. Kościelniak, On genericity of chaos, Topology Appl., 154 (2007), 1951-1955.doi: 10.1016/j.topol.2007.01.014. |
[24] |
K. Kuratowski, "Topology," Vol. 1, Academic Press, New York-London, Państwowe Wydawnictwo Naukowe, Warsaw, 1966. |
[25] |
Y. Kifer, Characteristic exponents of dynamical systems in metric spaces, Ergodic Theory Dynam. Systems, 3 (1983), 119-127.doi: 10.1017/S0143385700001838. |
[26] |
R. Mañé, Oseledec's theorem from the generic viewpoint, in "Proceedings of the International Congress of Mathematicians," Vol. 1, 2 (Warsaw, 1983), 1269-1276, PWN, Warsaw, 1984. |
[27] |
S. Müller, Approximation of volume-preserving homeomorphisms by volume-preserving diffeomorphisms, preprint, arXiv:0901.1002, 2009. |
[28] |
J. Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. of Math. (2), 72 (1960), 521-554.doi: 10.2307/1970228. |
[29] |
Yong-Geun Oh, $C^0$-coerciveness of Moser's problem and smoothing area preserving homeomorphisms, preprint, arXiv:math/0601183, 2006. |
[30] |
V. I. Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-231. |
[31] |
J. Oxtoby and S. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2), 42 (1941), 874-920.doi: 10.2307/1968772. |
[32] |
J. Palis, C. Pugh, M. Shub and D. Sullivan, Genericity theorems in topological dynamics, in "Dynamical systems-Warwick 1974" (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974, presented to E. C. Zeeman on his fiftieth birthday), 241-250, Lecture Notes in Math., 468, Springer, Berlin, 1975. |
[33] |
M. Pollicott, "Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds," London Mathematical Society Lecture Notes Series, 180, Cambridge University Press, Cambridge, 1993. |
[34] |
C. Robinson, Generic properties of conservative systems, Am. J. Math., 92 (1970), 562-603.doi: 10.2307/2373361. |
[35] |
J.-C. Sikorav, Approximation of a volume-preserving homeomorphism by a volume-preserving diffeomorphism, symplexe, September 2007. Avaiable from: http://www.umpa.ens-lyon.fr/. |
[36] |
M. Viana, Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents, Ann. of Math. (2), 167 (2008), 643-680.doi: 10.4007/annals.2008.167.643. |
[37] |
J.-C. Yoccoz, Travaux de Herman sur les Tores invariants, Séminaire Bourbaki, Vol. 1991/92, Astérisque, 206 (1992), 311-344. |
[38] |
E. Zehnder, Note on smoothing symplectic and volume-preserving diffeomorphisms, in "Geometry and Topology" (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), 828-854, Lecture Notes in Math., 597, Springer, Berlin, 1977. |