Advanced Search
Article Contents
Article Contents

Spectral analysis for transition front solutions in Cahn-Hilliard systems

Abstract Related Papers Cited by
  • We consider the spectrum associated with the linear operator obtained when a Cahn--Hilliard system on $\mathbb{R}$ is linearized about a transition wave solution. In many cases it's possible to show that the only non-negative eigenvalue is $\lambda = 0$, and so stability depends entirely on the nature of this neutral eigenvalue. In such cases, we identify a stability condition based on an appropriate Evans function, and we verify this condition under strong structural conditions on our equations. More generally, we discuss and implement a straightforward numerical check of our condition, valid under mild structural conditions.
    Mathematics Subject Classification: Primary: 35B35, 35P05; Secondary: 35Q99.


    \begin{equation} \\ \end{equation}
  • [1]

    N. D. Alikakos, S. I. Betelu, and X. Chen, Explicit stationary solutions in multiple well dynamics and non-uniqueness of interfacial energy densities, European J. of Applied Mathematics, 17 (2006), 525-556.doi: 10.1017/S095679250600667X.


    N. D. Alikakos and G. Fusco, On the connection problem for potentials with several global minima, Indiana Univ. Math. J., 57 (2008), 1871-1906.doi: 10.1512/iumj.2008.57.3181.


    J. Alexander, R. Gardner and C. K. R. T. Jones, A topological invariant arising in the stability analysis of traveling waves, J. Reine Angew. Math., 410 (1990), 167-212.


    J. Bricmont, A. Kupiainen and J. Taskinen, Stability of Cahn-Hilliard fronts, Comm. Pure Appl. Math., 52 (1999), 839-871.doi: 10.1002/(SICI)1097-0312(199907)52:7<839::AID-CPA4>3.0.CO;2-I.


    F. Boyer and C. Lapuerta, Study of a three component Cahn-Hilliard flow model, Mathematical Modeling and Numerical Analysis, 40 (2006), 653-687.doi: 10.1051/m2an:2006028.


    J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801.doi: 10.1016/0001-6160(61)90182-1.


    J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I: Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.doi: 10.1063/1.1744102.


    D. de Fontaine, "A Computer Simulation of the Evolution of Coherent Composition Variations in Solid Solutions,'' Ph. D. thesis, Northwestern University, 1967.


    D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions I. Stability criteria, J. Phys. Chem. Solids, 33 (1972), 297-310.doi: 10.1016/0022-3697(72)90011-X.


    D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions II. Fluctuations and kinetics, J. Phys. Chem. Solids, 34 (1973), 1285-1304.doi: 10.1016/S0022-3697(73)80026-5.


    D. J. Eyre, Systems of Cahn-Hilliard equations, SIAM J. Appl. Math., 53 (1993), 1686-1712.doi: 10.1137/0153078.


    M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems," Annals of Mathematics Studies, Princeton University Press, 1983.


    M. Giaquinta and E. Giusti, Differentiability of minima of non-differentiable functionals, Invent. Math., 72 (1983), 285-298.doi: 10.1007/BF01389324.


    C. P. Grant, Slow motion in one-dimensional Cahn-Morral systems, SIAM J. Math. Anal., 26 (1995), 21-34.doi: 10.1137/S0036141092226053.


    R. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math., 51 (1998), 797-855.doi: 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1.


    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture notes in mathematics, Springer-Verlag, 840, 1981.


    P. Howard, Pointwise estimates and stability for degenerate viscous shock waves, J. Reine Angew. Math., 545 (2002), 19-65.doi: 10.1515/crll.2002.034.


    P. Howard, Local tracking and stability for degenerate viscous shock waves, J. Differential Eqns., 186 (2002), 440-469.


    P. Howard, Asymptotic behavior near transition fronts for equations of generalized Cahn-Hilliard form, Commun. Math. Phys., 269 (2007), 765-808.doi: 10.1007/s00220-006-0102-5.


    P. Howard, Asymptotic behavior near planar transition fronts for the Cahn-Hilliard equation, Phys. D, 229 (2007), 123-165.doi: 10.1016/j.physd.2007.03.018.


    P. Howard, Spectral analysis of stationary solutions of the Cahn-Hilliard equation, Advances in Differential Equations, 14 (2009), 87-120.


    P. Howard and B. KwonStability for transition front solutions in Cahn-Hilliard Systems, in preparation.


    P. Howard and K. Zumbrun, The Evans function and stability criteria for degenerate viscous shock waves, Discrete and Continuous Dynamical Systems, 10 (2004), 837-855.doi: 10.3934/dcds.2004.10.837.


    J. J. Hoyt, Spinodal decomposition in ternary alloys, Acta Metall., 37 (1989), 2489-2497.doi: 10.1016/0001-6160(89)90047-3.


    J. Kim and K. Kang, A numerical method for the ternary Cahn-Hilliard system with a degenerate mobility, Applied Numerical Mathematics, 59 (2009), 1029-1042.doi: 10.1016/j.apnum.2008.04.004.


    R. V. Kohn and X. Yan, Coarsening rates for models of multicomponent phase separation, Interfaces Free Bound., 6 (2004), 135-149.doi: 10.4171/IFB/94.


    J. E. Morral and J. W. Cahn, Spinodal decomposition in ternary systems, Acta Metall., 19 (1971), 1037-1045.doi: 10.1016/0001-6160(71)90036-8.


    M. Reed and B. Simon, "Methods of Modern Mathematical Physics IV: Analysis of Operators," Academic Press, 1978.


    V. Stefanopoulos, Heteroclinic connections for multiple-well potentials: The anisotropic case, Proc. Royal Soc. Edinburgh Sect. A, 138 (2008), 1313-1330.doi: 10.1017/S0308210507000145.


    K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J., 47 (1998), 741-871. See also the errata for this paper: Indiana U. Math. J., 51 (2002), 1017-1021.doi: 10.1512/iumj.2002.51.2410.

  • 加载中

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint