• Previous Article
    Asymptotic behavior of solutions to a one-dimensional full model for phase transitions with microscopic movements
  • DCDS Home
  • This Issue
  • Next Article
    Traveling wave solution for a lattice dynamical system with convolution type nonlinearity
January  2012, 32(1): 125-166. doi: 10.3934/dcds.2012.32.125

Spectral analysis for transition front solutions in Cahn-Hilliard systems

1. 

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, United States, United States

Received  July 2010 Revised  March 2011 Published  September 2011

We consider the spectrum associated with the linear operator obtained when a Cahn--Hilliard system on $\mathbb{R}$ is linearized about a transition wave solution. In many cases it's possible to show that the only non-negative eigenvalue is $\lambda = 0$, and so stability depends entirely on the nature of this neutral eigenvalue. In such cases, we identify a stability condition based on an appropriate Evans function, and we verify this condition under strong structural conditions on our equations. More generally, we discuss and implement a straightforward numerical check of our condition, valid under mild structural conditions.
Citation: Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete & Continuous Dynamical Systems, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125
References:
[1]

N. D. Alikakos, S. I. Betelu, and X. Chen, Explicit stationary solutions in multiple well dynamics and non-uniqueness of interfacial energy densities, European J. of Applied Mathematics, 17 (2006), 525-556. doi: 10.1017/S095679250600667X.  Google Scholar

[2]

N. D. Alikakos and G. Fusco, On the connection problem for potentials with several global minima, Indiana Univ. Math. J., 57 (2008), 1871-1906. doi: 10.1512/iumj.2008.57.3181.  Google Scholar

[3]

J. Alexander, R. Gardner and C. K. R. T. Jones, A topological invariant arising in the stability analysis of traveling waves, J. Reine Angew. Math., 410 (1990), 167-212.  Google Scholar

[4]

J. Bricmont, A. Kupiainen and J. Taskinen, Stability of Cahn-Hilliard fronts, Comm. Pure Appl. Math., 52 (1999), 839-871. doi: 10.1002/(SICI)1097-0312(199907)52:7<839::AID-CPA4>3.0.CO;2-I.  Google Scholar

[5]

F. Boyer and C. Lapuerta, Study of a three component Cahn-Hilliard flow model, Mathematical Modeling and Numerical Analysis, 40 (2006), 653-687. doi: 10.1051/m2an:2006028.  Google Scholar

[6]

J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801. doi: 10.1016/0001-6160(61)90182-1.  Google Scholar

[7]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I: Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. doi: 10.1063/1.1744102.  Google Scholar

[8]

D. de Fontaine, "A Computer Simulation of the Evolution of Coherent Composition Variations in Solid Solutions,'' Ph. D. thesis, Northwestern University, 1967. Google Scholar

[9]

D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions I. Stability criteria, J. Phys. Chem. Solids, 33 (1972), 297-310. doi: 10.1016/0022-3697(72)90011-X.  Google Scholar

[10]

D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions II. Fluctuations and kinetics, J. Phys. Chem. Solids, 34 (1973), 1285-1304. doi: 10.1016/S0022-3697(73)80026-5.  Google Scholar

[11]

, D. de Fontaine,, Private communication 2009., (2009).   Google Scholar

[12]

D. J. Eyre, Systems of Cahn-Hilliard equations, SIAM J. Appl. Math., 53 (1993), 1686-1712. doi: 10.1137/0153078.  Google Scholar

[13]

M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems," Annals of Mathematics Studies, Princeton University Press, 1983.  Google Scholar

[14]

M. Giaquinta and E. Giusti, Differentiability of minima of non-differentiable functionals, Invent. Math., 72 (1983), 285-298. doi: 10.1007/BF01389324.  Google Scholar

[15]

C. P. Grant, Slow motion in one-dimensional Cahn-Morral systems, SIAM J. Math. Anal., 26 (1995), 21-34. doi: 10.1137/S0036141092226053.  Google Scholar

[16]

R. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math., 51 (1998), 797-855. doi: 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1.  Google Scholar

[17]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture notes in mathematics, Springer-Verlag, 840, 1981.  Google Scholar

[18]

P. Howard, Pointwise estimates and stability for degenerate viscous shock waves, J. Reine Angew. Math., 545 (2002), 19-65. doi: 10.1515/crll.2002.034.  Google Scholar

[19]

P. Howard, Local tracking and stability for degenerate viscous shock waves, J. Differential Eqns., 186 (2002), 440-469.  Google Scholar

[20]

P. Howard, Asymptotic behavior near transition fronts for equations of generalized Cahn-Hilliard form, Commun. Math. Phys., 269 (2007), 765-808. doi: 10.1007/s00220-006-0102-5.  Google Scholar

[21]

P. Howard, Asymptotic behavior near planar transition fronts for the Cahn-Hilliard equation, Phys. D, 229 (2007), 123-165. doi: 10.1016/j.physd.2007.03.018.  Google Scholar

[22]

P. Howard, Spectral analysis of stationary solutions of the Cahn-Hilliard equation, Advances in Differential Equations, 14 (2009), 87-120.  Google Scholar

[23]

P. Howard and B. Kwon, Stability for transition front solutions in Cahn-Hilliard Systems,, in preparation., ().   Google Scholar

[24]

P. Howard and K. Zumbrun, The Evans function and stability criteria for degenerate viscous shock waves, Discrete and Continuous Dynamical Systems, 10 (2004), 837-855. doi: 10.3934/dcds.2004.10.837.  Google Scholar

[25]

J. J. Hoyt, Spinodal decomposition in ternary alloys, Acta Metall., 37 (1989), 2489-2497. doi: 10.1016/0001-6160(89)90047-3.  Google Scholar

[26]

J. Kim and K. Kang, A numerical method for the ternary Cahn-Hilliard system with a degenerate mobility, Applied Numerical Mathematics, 59 (2009), 1029-1042. doi: 10.1016/j.apnum.2008.04.004.  Google Scholar

[27]

R. V. Kohn and X. Yan, Coarsening rates for models of multicomponent phase separation, Interfaces Free Bound., 6 (2004), 135-149. doi: 10.4171/IFB/94.  Google Scholar

[28]

J. E. Morral and J. W. Cahn, Spinodal decomposition in ternary systems, Acta Metall., 19 (1971), 1037-1045. doi: 10.1016/0001-6160(71)90036-8.  Google Scholar

[29]

, I. Prigogine,, Bull. Soc. Chim. Belge., 8-9 (1943), 8.   Google Scholar

[30]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics IV: Analysis of Operators," Academic Press, 1978.  Google Scholar

[31]

V. Stefanopoulos, Heteroclinic connections for multiple-well potentials: The anisotropic case, Proc. Royal Soc. Edinburgh Sect. A, 138 (2008), 1313-1330. doi: 10.1017/S0308210507000145.  Google Scholar

[32]

K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J., 47 (1998), 741-871. See also the errata for this paper: Indiana U. Math. J., 51 (2002), 1017-1021. doi: 10.1512/iumj.2002.51.2410.  Google Scholar

show all references

References:
[1]

N. D. Alikakos, S. I. Betelu, and X. Chen, Explicit stationary solutions in multiple well dynamics and non-uniqueness of interfacial energy densities, European J. of Applied Mathematics, 17 (2006), 525-556. doi: 10.1017/S095679250600667X.  Google Scholar

[2]

N. D. Alikakos and G. Fusco, On the connection problem for potentials with several global minima, Indiana Univ. Math. J., 57 (2008), 1871-1906. doi: 10.1512/iumj.2008.57.3181.  Google Scholar

[3]

J. Alexander, R. Gardner and C. K. R. T. Jones, A topological invariant arising in the stability analysis of traveling waves, J. Reine Angew. Math., 410 (1990), 167-212.  Google Scholar

[4]

J. Bricmont, A. Kupiainen and J. Taskinen, Stability of Cahn-Hilliard fronts, Comm. Pure Appl. Math., 52 (1999), 839-871. doi: 10.1002/(SICI)1097-0312(199907)52:7<839::AID-CPA4>3.0.CO;2-I.  Google Scholar

[5]

F. Boyer and C. Lapuerta, Study of a three component Cahn-Hilliard flow model, Mathematical Modeling and Numerical Analysis, 40 (2006), 653-687. doi: 10.1051/m2an:2006028.  Google Scholar

[6]

J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801. doi: 10.1016/0001-6160(61)90182-1.  Google Scholar

[7]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I: Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. doi: 10.1063/1.1744102.  Google Scholar

[8]

D. de Fontaine, "A Computer Simulation of the Evolution of Coherent Composition Variations in Solid Solutions,'' Ph. D. thesis, Northwestern University, 1967. Google Scholar

[9]

D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions I. Stability criteria, J. Phys. Chem. Solids, 33 (1972), 297-310. doi: 10.1016/0022-3697(72)90011-X.  Google Scholar

[10]

D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions II. Fluctuations and kinetics, J. Phys. Chem. Solids, 34 (1973), 1285-1304. doi: 10.1016/S0022-3697(73)80026-5.  Google Scholar

[11]

, D. de Fontaine,, Private communication 2009., (2009).   Google Scholar

[12]

D. J. Eyre, Systems of Cahn-Hilliard equations, SIAM J. Appl. Math., 53 (1993), 1686-1712. doi: 10.1137/0153078.  Google Scholar

[13]

M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems," Annals of Mathematics Studies, Princeton University Press, 1983.  Google Scholar

[14]

M. Giaquinta and E. Giusti, Differentiability of minima of non-differentiable functionals, Invent. Math., 72 (1983), 285-298. doi: 10.1007/BF01389324.  Google Scholar

[15]

C. P. Grant, Slow motion in one-dimensional Cahn-Morral systems, SIAM J. Math. Anal., 26 (1995), 21-34. doi: 10.1137/S0036141092226053.  Google Scholar

[16]

R. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math., 51 (1998), 797-855. doi: 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1.  Google Scholar

[17]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture notes in mathematics, Springer-Verlag, 840, 1981.  Google Scholar

[18]

P. Howard, Pointwise estimates and stability for degenerate viscous shock waves, J. Reine Angew. Math., 545 (2002), 19-65. doi: 10.1515/crll.2002.034.  Google Scholar

[19]

P. Howard, Local tracking and stability for degenerate viscous shock waves, J. Differential Eqns., 186 (2002), 440-469.  Google Scholar

[20]

P. Howard, Asymptotic behavior near transition fronts for equations of generalized Cahn-Hilliard form, Commun. Math. Phys., 269 (2007), 765-808. doi: 10.1007/s00220-006-0102-5.  Google Scholar

[21]

P. Howard, Asymptotic behavior near planar transition fronts for the Cahn-Hilliard equation, Phys. D, 229 (2007), 123-165. doi: 10.1016/j.physd.2007.03.018.  Google Scholar

[22]

P. Howard, Spectral analysis of stationary solutions of the Cahn-Hilliard equation, Advances in Differential Equations, 14 (2009), 87-120.  Google Scholar

[23]

P. Howard and B. Kwon, Stability for transition front solutions in Cahn-Hilliard Systems,, in preparation., ().   Google Scholar

[24]

P. Howard and K. Zumbrun, The Evans function and stability criteria for degenerate viscous shock waves, Discrete and Continuous Dynamical Systems, 10 (2004), 837-855. doi: 10.3934/dcds.2004.10.837.  Google Scholar

[25]

J. J. Hoyt, Spinodal decomposition in ternary alloys, Acta Metall., 37 (1989), 2489-2497. doi: 10.1016/0001-6160(89)90047-3.  Google Scholar

[26]

J. Kim and K. Kang, A numerical method for the ternary Cahn-Hilliard system with a degenerate mobility, Applied Numerical Mathematics, 59 (2009), 1029-1042. doi: 10.1016/j.apnum.2008.04.004.  Google Scholar

[27]

R. V. Kohn and X. Yan, Coarsening rates for models of multicomponent phase separation, Interfaces Free Bound., 6 (2004), 135-149. doi: 10.4171/IFB/94.  Google Scholar

[28]

J. E. Morral and J. W. Cahn, Spinodal decomposition in ternary systems, Acta Metall., 19 (1971), 1037-1045. doi: 10.1016/0001-6160(71)90036-8.  Google Scholar

[29]

, I. Prigogine,, Bull. Soc. Chim. Belge., 8-9 (1943), 8.   Google Scholar

[30]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics IV: Analysis of Operators," Academic Press, 1978.  Google Scholar

[31]

V. Stefanopoulos, Heteroclinic connections for multiple-well potentials: The anisotropic case, Proc. Royal Soc. Edinburgh Sect. A, 138 (2008), 1313-1330. doi: 10.1017/S0308210507000145.  Google Scholar

[32]

K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J., 47 (1998), 741-871. See also the errata for this paper: Indiana U. Math. J., 51 (2002), 1017-1021. doi: 10.1512/iumj.2002.51.2410.  Google Scholar

[1]

Quan Wang, Dongming Yan. On the stability and transition of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2607-2620. doi: 10.3934/dcdsb.2020024

[2]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[3]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73

[4]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[5]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

[6]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[7]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[8]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[9]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[10]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations & Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[11]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[12]

Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127

[13]

Alain Miranville, Ramon Quintanilla, Wafa Saoud. Asymptotic behavior of a Cahn-Hilliard/Allen-Cahn system with temperature. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2257-2288. doi: 10.3934/cpaa.2020099

[14]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[15]

Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669

[16]

Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308

[17]

Peter Howard, K. Zumbrun. The Evans function and stability criteria for degenerate viscous shock waves. Discrete & Continuous Dynamical Systems, 2004, 10 (4) : 837-855. doi: 10.3934/dcds.2004.10.837

[18]

Ramon Plaza, K. Zumbrun. An Evans function approach to spectral stability of small-amplitude shock profiles. Discrete & Continuous Dynamical Systems, 2004, 10 (4) : 885-924. doi: 10.3934/dcds.2004.10.885

[19]

Elena Bonetti, Pierluigi Colli, Luca Scarpa, Giuseppe Tomassetti. A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1001-1022. doi: 10.3934/cpaa.2018049

[20]

Dirk Blömker, Bernhard Gawron, Thomas Wanner. Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 25-52. doi: 10.3934/dcds.2010.27.25

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]