April  2012, 32(4): 1309-1353. doi: 10.3934/dcds.2012.32.1309

Computation of whiskered invariant tori and their associated manifolds: New fast algorithms

1. 

Center for Neural Science, New York University, New York, NY 10003, United States

2. 

Department of Mathematics, The University of Texas at Austin, Austin, TX, 78712-1082, United States

3. 

Université Paul Cézanne, Laboratoire LATP UMR 6632, Marseille, France

Received  September 2010 Revised  August 2011 Published  October 2011

We present efficient (low storage requirement and low operation count) algorithms for the computation of several invariant objects for Hamiltonian dynamics, namely KAM tori (i.e diffeomorphic copies of tori such that the motion on them is conjugated to a rigid rotation) both Lagrangian tori(of maximal dimension) and whiskered tori (i.e. tori with hyperbolic directions which, together with the tangents to the torus and the symplectic conjugates span the whole tangent space). We also present algorithms to compute the invariant splitting and the invariant manifolds of whiskered tori. We present the algorithms for both discrete-time dynamical systems and differential equations.
    The algorithms do not require that the system is presented in action-angle variables nor that it is close to integrable and are backed up by rigorous a-posteriori bounds. We will report on the implementation results elsewhere.
Citation: Gemma Huguet, Rafael de la Llave, Yannick Sire. Computation of whiskered invariant tori and their associated manifolds: New fast algorithms. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1309-1353. doi: 10.3934/dcds.2012.32.1309
References:
[1]

V. I. Arnold, Instability of dynamical systems with several degrees of freedom, Sov. Math. Doklady, 5 (1964), 581-585.

[2]

S. Aubry, The twist map, the extended Frenkel-Kontorova model and the devil's staircase. Order in chaos, (Los Alamos, N.M., 1982), Phys. D, 7 (1983), 240-258. doi: 10.1016/0167-2789(83)90129-X.

[3]

S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states, Phys. D, 8 (1983), 381-422. doi: 10.1016/0167-2789(83)90233-6.

[4]

A. Celletti and L. Chierchia, KAM stability and celestial mechanics, Mem. Amer. Math. Soc., 187 (2007), viii+134 pp.

[5]

A. Celletti, C. Falcolini and U. Locatelli, On the break-down threshold of invariant tori in four dimensional maps, Regul. Chaotic Dyn., 9 (2004), 227-253. doi: 10.1070/RD2004v009n03ABEH000278.

[6]

R. Calleja and R. de la Llave, Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps, Nonlinearity, 22 (2009), 1311-1336. doi: 10.1088/0951-7715/22/6/004.

[7]

R. Calleja and R. de la Llave, A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification, Nonlinearity, 23 (2010), 2029-2058. doi: 10.1088/0951-7715/23/9/001.

[8]

R. Calleja and R. de la Llave, Computation of the breakdown of analyticity in statistical mechanics models: Numerical results and a renormalization group explanation, J. Stat. Phys, 141 (2010), 940-951. doi: 10.1007/s10955-010-0085-7.

[9]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces, Indiana Univ. Math. J., 52 (2003), 283-328. doi: 10.1512/iumj.2003.52.2245.

[10]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds. II. Regularity with respect to parameters, Indiana Univ. Math. J., 52 (2003), 329-360. doi: 10.1512/iumj.2003.52.2407.

[11]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds. III. Overview and applications, J. Differential Equations, 218 (2005), 444-515. doi: 10.1016/j.jde.2004.12.003.

[12]

A. Delshams and G. Huguet, Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems, Nonlinearity, 22 (2009), 1997-2077. doi: 10.1088/0951-7715/22/8/013.

[13]

A. Delshams, R. de la Llave and T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Heuristics and rigorous verification on a model, Mem. Amer. Math. Soc., 179 (2006), viii+141 pp.

[14]

P Duarte, Plenty of elliptic islands for the standard family of area preserving maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 359-409.

[15]

E. Fontich, R. de la Llave and Y. Sire, Construction of invariant whiskered tori by a parameterization method. I. Maps and flows in finite dimensions, J. Differential Equations, 246 (2009), 3136-3213. doi: 10.1016/j.jde.2009.01.037.

[16]

E. Fontich, R. de la Llave and Y. Sire, A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems, Electron. Res. Announc. Math. Sci., 16 (2009), 9-22.

[17]

F. Fassò, M. Guzzo and G. Benettin, Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems, Comm. Math. Phys., 197 (1998), 347-360. doi: 10.1007/s002200050454.

[18]

M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proceedings of the IEEE, 93 (2005), 216-231. doi: 10.1109/JPROC.2004.840301.

[19]

B. Fayad, A. Katok and A. Windsor, Mixed spectrum reparameterizations of linear flows on $\mathbbT^ 2$, Mosc. Math. J., 1 (2001), 521-537, 644.

[20]

M. Guzzo, F. Fassò and G. Benettin, On the stability of elliptic equilibria, Math. Phys. Electron. J., 4 (1998), Paper 1, 16 pp. (electronic).

[21]

Samuel M. Graff, On the conservation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations, 15 (1974), 1-69. doi: 10.1016/0022-0396(74)90086-2.

[22]

J. M. Greene, A method for determining a stochastic transition, Jour. Math. Phys., 20 (1979), 1183-1201. doi: 10.1063/1.524170.

[23]

G. H. Golub and C. F. Van Loan, "Matrix Computations,'' Third edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996.

[24]

Alex Haro, Automatic differentiation tools in computational dynamical systems, Manuscript, 2008.

[25]

G. Huguet, R. de la Llave and Y. Sire, Fast iteration of cocyles over rotations and Computation of hyperbolic bundles, preprint, arXiv:1102.2461.

[26]

Michael-R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau. Vol. 1, With an appendix by Albert Fathi, With an English summary, in "Astérisque," 103-104, Société Mathématique de France, Paris, 1983.

[27]

M.-R. Herman, On the dynamics of Lagrangian tori invariant by symplectic diffeomorphisms, in "Progress in Variational Methods in Hamiltonian Systems and Elliptic Equations" (L'Aquila, 1990), Pitman Res. Notes Math. Ser., 243, Longman Sci. Tech., Harlow, (1992), 92-112.

[28]

A. Haro and R. de la Llave, New mechanisms for lack of equipartion of energy, Phys. Rev. Lett., 89 (2000), 1859-1862. doi: 10.1103/PhysRevLett.85.1859.

[29]

À. Haro and R. de la Llave, Manifolds on the verge of a hyperbolicity breakdown, Chaos, 16 (2006), 013120, 8 pp.

[30]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261-1300. doi: 10.3934/dcdsb.2006.6.1261.

[31]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results, J. Differential Equations, 228 (2006), 530-579. doi: 10.1016/j.jde.2005.10.005.

[32]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Explorations and mechanisms for the breakdown of hyperbolicity, SIAM Jour. Appl. Dyn. Syst., 6 (2007), 142-207. doi: 10.1137/050637327.

[33]

À. Jorba and E. Olmedo, A parallel method to compute quasi-periodic solutions, in "EQUADIFF 2003," 181-183, World Sci. Publ., Hackensack, NJ, 2005.

[34]

À. Jorba and E. Olmedo, On the computation of reducible invariant tori on a parallel computer, SIAM J. Appl. Dyn. Syst., 8 (2009), 1382-1404. doi: 10.1137/080724563.

[35]

D. E. Knuth, "The Art of Computer Programming. Vol. 2: Seminumerical Algorithms,'' Third revised edition, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1997.

[36]

R. de la Llave, A. Gonzàlez, À. Jorba and J. Villanueva, KAM theory without action-angle variables, Nonlinearity, 18 (2005), 855-895. doi: 10.1088/0951-7715/18/2/020.

[37]

R. de la Llave, A tutorial on KAM theory, in "Smooth Ergodic Theory and its Applications" (Seattle, WA, 1999), Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, (2001), 175-292.

[38]

R. de la Llave and C. E. Wayne, Whiskered and low dimensional tori in nearly integrable Hamiltonian systems, Math. Phys. Electron. J., 10 (2004), Paper 5, 45 pp. (electronic).

[39]

R. S. McKay, "Renormalisation in Area Preserving Maps,'' Ph.D thesis, Princeton University, 1982.

[40]

A. Olvera and N. P. Petrov, Regularity properties of critical invariant circles of twist maps and their universality, SIAM J. Appl. Dyn. Syst., 7 (2008), 962-987. doi: 10.1137/070687967.

[41]

M. J. Raković and Shih-I Chu, New integrable systems: Hydrogen atom in external fields, Phys. D, 81 (1995), 271-279. doi: 10.1016/0167-2789(94)00220-K.

[42]

M. J. Raković and Shih-I Chu, Phase-space structure of a new integrable system related to hydrogen atoms in external fields, J. Phys. A, 30 (1997), 733-753. doi: 10.1088/0305-4470/30/2/033.

[43]

H. Rüssmann, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, in "Dynamical Systems, Theory and Applications" (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., Vol. 38, Berlin, Springer, (1975), 598-624.

[44]

C. Simó, private communication private communication, 2000.

[45]

E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. II, Comm. Pure Appl. Math., 29 (1976), 49-111. doi: 10.1002/cpa.3160290104.

show all references

References:
[1]

V. I. Arnold, Instability of dynamical systems with several degrees of freedom, Sov. Math. Doklady, 5 (1964), 581-585.

[2]

S. Aubry, The twist map, the extended Frenkel-Kontorova model and the devil's staircase. Order in chaos, (Los Alamos, N.M., 1982), Phys. D, 7 (1983), 240-258. doi: 10.1016/0167-2789(83)90129-X.

[3]

S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states, Phys. D, 8 (1983), 381-422. doi: 10.1016/0167-2789(83)90233-6.

[4]

A. Celletti and L. Chierchia, KAM stability and celestial mechanics, Mem. Amer. Math. Soc., 187 (2007), viii+134 pp.

[5]

A. Celletti, C. Falcolini and U. Locatelli, On the break-down threshold of invariant tori in four dimensional maps, Regul. Chaotic Dyn., 9 (2004), 227-253. doi: 10.1070/RD2004v009n03ABEH000278.

[6]

R. Calleja and R. de la Llave, Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps, Nonlinearity, 22 (2009), 1311-1336. doi: 10.1088/0951-7715/22/6/004.

[7]

R. Calleja and R. de la Llave, A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification, Nonlinearity, 23 (2010), 2029-2058. doi: 10.1088/0951-7715/23/9/001.

[8]

R. Calleja and R. de la Llave, Computation of the breakdown of analyticity in statistical mechanics models: Numerical results and a renormalization group explanation, J. Stat. Phys, 141 (2010), 940-951. doi: 10.1007/s10955-010-0085-7.

[9]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces, Indiana Univ. Math. J., 52 (2003), 283-328. doi: 10.1512/iumj.2003.52.2245.

[10]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds. II. Regularity with respect to parameters, Indiana Univ. Math. J., 52 (2003), 329-360. doi: 10.1512/iumj.2003.52.2407.

[11]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds. III. Overview and applications, J. Differential Equations, 218 (2005), 444-515. doi: 10.1016/j.jde.2004.12.003.

[12]

A. Delshams and G. Huguet, Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems, Nonlinearity, 22 (2009), 1997-2077. doi: 10.1088/0951-7715/22/8/013.

[13]

A. Delshams, R. de la Llave and T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Heuristics and rigorous verification on a model, Mem. Amer. Math. Soc., 179 (2006), viii+141 pp.

[14]

P Duarte, Plenty of elliptic islands for the standard family of area preserving maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 359-409.

[15]

E. Fontich, R. de la Llave and Y. Sire, Construction of invariant whiskered tori by a parameterization method. I. Maps and flows in finite dimensions, J. Differential Equations, 246 (2009), 3136-3213. doi: 10.1016/j.jde.2009.01.037.

[16]

E. Fontich, R. de la Llave and Y. Sire, A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems, Electron. Res. Announc. Math. Sci., 16 (2009), 9-22.

[17]

F. Fassò, M. Guzzo and G. Benettin, Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems, Comm. Math. Phys., 197 (1998), 347-360. doi: 10.1007/s002200050454.

[18]

M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proceedings of the IEEE, 93 (2005), 216-231. doi: 10.1109/JPROC.2004.840301.

[19]

B. Fayad, A. Katok and A. Windsor, Mixed spectrum reparameterizations of linear flows on $\mathbbT^ 2$, Mosc. Math. J., 1 (2001), 521-537, 644.

[20]

M. Guzzo, F. Fassò and G. Benettin, On the stability of elliptic equilibria, Math. Phys. Electron. J., 4 (1998), Paper 1, 16 pp. (electronic).

[21]

Samuel M. Graff, On the conservation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations, 15 (1974), 1-69. doi: 10.1016/0022-0396(74)90086-2.

[22]

J. M. Greene, A method for determining a stochastic transition, Jour. Math. Phys., 20 (1979), 1183-1201. doi: 10.1063/1.524170.

[23]

G. H. Golub and C. F. Van Loan, "Matrix Computations,'' Third edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996.

[24]

Alex Haro, Automatic differentiation tools in computational dynamical systems, Manuscript, 2008.

[25]

G. Huguet, R. de la Llave and Y. Sire, Fast iteration of cocyles over rotations and Computation of hyperbolic bundles, preprint, arXiv:1102.2461.

[26]

Michael-R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau. Vol. 1, With an appendix by Albert Fathi, With an English summary, in "Astérisque," 103-104, Société Mathématique de France, Paris, 1983.

[27]

M.-R. Herman, On the dynamics of Lagrangian tori invariant by symplectic diffeomorphisms, in "Progress in Variational Methods in Hamiltonian Systems and Elliptic Equations" (L'Aquila, 1990), Pitman Res. Notes Math. Ser., 243, Longman Sci. Tech., Harlow, (1992), 92-112.

[28]

A. Haro and R. de la Llave, New mechanisms for lack of equipartion of energy, Phys. Rev. Lett., 89 (2000), 1859-1862. doi: 10.1103/PhysRevLett.85.1859.

[29]

À. Haro and R. de la Llave, Manifolds on the verge of a hyperbolicity breakdown, Chaos, 16 (2006), 013120, 8 pp.

[30]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261-1300. doi: 10.3934/dcdsb.2006.6.1261.

[31]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results, J. Differential Equations, 228 (2006), 530-579. doi: 10.1016/j.jde.2005.10.005.

[32]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Explorations and mechanisms for the breakdown of hyperbolicity, SIAM Jour. Appl. Dyn. Syst., 6 (2007), 142-207. doi: 10.1137/050637327.

[33]

À. Jorba and E. Olmedo, A parallel method to compute quasi-periodic solutions, in "EQUADIFF 2003," 181-183, World Sci. Publ., Hackensack, NJ, 2005.

[34]

À. Jorba and E. Olmedo, On the computation of reducible invariant tori on a parallel computer, SIAM J. Appl. Dyn. Syst., 8 (2009), 1382-1404. doi: 10.1137/080724563.

[35]

D. E. Knuth, "The Art of Computer Programming. Vol. 2: Seminumerical Algorithms,'' Third revised edition, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1997.

[36]

R. de la Llave, A. Gonzàlez, À. Jorba and J. Villanueva, KAM theory without action-angle variables, Nonlinearity, 18 (2005), 855-895. doi: 10.1088/0951-7715/18/2/020.

[37]

R. de la Llave, A tutorial on KAM theory, in "Smooth Ergodic Theory and its Applications" (Seattle, WA, 1999), Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, (2001), 175-292.

[38]

R. de la Llave and C. E. Wayne, Whiskered and low dimensional tori in nearly integrable Hamiltonian systems, Math. Phys. Electron. J., 10 (2004), Paper 5, 45 pp. (electronic).

[39]

R. S. McKay, "Renormalisation in Area Preserving Maps,'' Ph.D thesis, Princeton University, 1982.

[40]

A. Olvera and N. P. Petrov, Regularity properties of critical invariant circles of twist maps and their universality, SIAM J. Appl. Dyn. Syst., 7 (2008), 962-987. doi: 10.1137/070687967.

[41]

M. J. Raković and Shih-I Chu, New integrable systems: Hydrogen atom in external fields, Phys. D, 81 (1995), 271-279. doi: 10.1016/0167-2789(94)00220-K.

[42]

M. J. Raković and Shih-I Chu, Phase-space structure of a new integrable system related to hydrogen atoms in external fields, J. Phys. A, 30 (1997), 733-753. doi: 10.1088/0305-4470/30/2/033.

[43]

H. Rüssmann, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, in "Dynamical Systems, Theory and Applications" (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., Vol. 38, Berlin, Springer, (1975), 598-624.

[44]

C. Simó, private communication private communication, 2000.

[45]

E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. II, Comm. Pure Appl. Math., 29 (1976), 49-111. doi: 10.1002/cpa.3160290104.

[1]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[2]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[3]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[4]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[5]

Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5 (1) : 1-29. doi: 10.3934/nhm.2010.5.1

[6]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[7]

Zhichao Ma, Junxiang Xu. A KAM theorem for quasi-periodic non-twist mappings and its application. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3169-3185. doi: 10.3934/dcds.2022013

[8]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[9]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[10]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[11]

Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 921-944. doi: 10.3934/dcdsb.2021075

[12]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171

[13]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[14]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

[15]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[16]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure and Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[17]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[18]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[19]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[20]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (27)

Other articles
by authors

[Back to Top]