- Previous Article
- DCDS Home
- This Issue
-
Next Article
Dominated splitting and Pesin's entropy formula
Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems
1. | School of Mathematical Sciences, Peking University, Beijing 100871, China |
  We give several applications of the dynamical density to partially hyperbolic maps that preserve some $acip$. We show that if $f$ is essentially accessible and $\mu$ is an $acip$ of $f$, then $\text{supp}(\mu)=M$, the map $f$ is transitive, and $\mu$-a.e. $x\in M$ has a dense orbit in $M$. Moreover if $f$ is accessible and center bunched, then either $f$ preserves a smooth measure or there is no $acip$ at all.
References:
[1] |
F. Abdenur and M. Viana, Flavors of partial hyperbolicity, preprint, 2008. |
[2] |
J. Alves and V. Pinheiro, Topological structure of (partially) hyperbolic sets with positive volume, Trans. Amer. Math. Soc., 360 (2008), 5551-5569.
doi: 10.1090/S0002-9947-08-04484-X. |
[3] |
A. Avila and J. Bochi, A generic $C^1$ map has no absolutely continuous invariant probability measure, Nonlinearity, 19 (2006), 2717-2725.
doi: 10.1088/0951-7715/19/11/011. |
[4] |
J. Bochi and M. Viana, Lyapunov exponents: How frequently are dynamical systems hyperbolic?, in "Modern Dynamical Systems and Applications," Cambridge Univ. Press, Cambridge, (2004), 271-297. |
[5] |
R. Bowen, A horseshoe with positive measure, Invent. Math., 29 (1975), 203-204.
doi: 10.1007/BF01389849. |
[6] |
R. Bowen, "Equilibrium States and the Ergodic Theory of Axiom A Diffeomorphisms," Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin-New York, 1975. |
[7] |
M. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Functional Anal. Appl., 9 (1975), 8-16.
doi: 10.1007/BF01078168. |
[8] |
J. Pesin and M. Brin, Partially hyperbolic dynamical systems, (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212. |
[9] |
M. Brin and G. Stuck, "Introduction to Dynamical Systems," Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511755316. |
[10] |
K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems, Annals of Math. (2), 171 (2010), 451-489. |
[11] |
K. Burns, D. Dolgopyat and Ya. Pesin, Partial hyperbolicity, Lyapunov exponents and stable ergodicity, J. Statist. Phys., 108 (2002), 927-942.
doi: 10.1023/A:1019779128351. |
[12] |
D. Dolgopyat and A Wilkinson, Stable accessibility is $C^1$ dense, in "Geometric Methods in Dynamics (II)", Astérisque 287 (2003), 33-60. |
[13] |
T. Fisher, "On the Structure of Hyperbolic Sets," Ph.D thesis, Northwestern University, 2004. |
[14] |
J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc., 158 (1971), 301-308.
doi: 10.1090/S0002-9947-1971-0283812-3. |
[15] |
H. Furstenberg, "Recurrence in Ergodic Theory and Combinatorial Number Theory," M. B. Porter Lectures, Princeton University Press, Princeton, N.J., 1981. |
[16] |
N. Gourmelon, Adapted metrics for dominated splittings, Ergod. Th. Dynam. Sys., 27 (2007), 1839-1849.
doi: 10.1017/S0143385707000272. |
[17] |
M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977. |
[18] |
V. Niţică and A. Török, An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one, Topology, 40 (2001), 259-278.
doi: 10.1016/S0040-9383(99)00060-9. |
[19] |
C. Pugh and M. Shub, Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc., 2 (2000), 1-52.
doi: 10.1007/s100970050013. |
[20] |
C. Robinson and L. S. Young, Nonabsolutely continuous foliations for an Anosov diffeomorphism, Invent. Math., 61 (1980), 159-176.
doi: 10.1007/BF01390119. |
[21] |
F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics, in "Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow," 35-87, Fields Inst. Commun., 51, Amer. Math. Soc., 2007. |
[22] |
A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms,, \arXiv{0809.4862}., ().
|
[23] |
Z. Xia, Hyperbolic invariant sets with positive measures, Discrete Contin. Dyn. Syst., 15 (2006), 811-818.
doi: 10.3934/dcds.2006.15.811. |
show all references
References:
[1] |
F. Abdenur and M. Viana, Flavors of partial hyperbolicity, preprint, 2008. |
[2] |
J. Alves and V. Pinheiro, Topological structure of (partially) hyperbolic sets with positive volume, Trans. Amer. Math. Soc., 360 (2008), 5551-5569.
doi: 10.1090/S0002-9947-08-04484-X. |
[3] |
A. Avila and J. Bochi, A generic $C^1$ map has no absolutely continuous invariant probability measure, Nonlinearity, 19 (2006), 2717-2725.
doi: 10.1088/0951-7715/19/11/011. |
[4] |
J. Bochi and M. Viana, Lyapunov exponents: How frequently are dynamical systems hyperbolic?, in "Modern Dynamical Systems and Applications," Cambridge Univ. Press, Cambridge, (2004), 271-297. |
[5] |
R. Bowen, A horseshoe with positive measure, Invent. Math., 29 (1975), 203-204.
doi: 10.1007/BF01389849. |
[6] |
R. Bowen, "Equilibrium States and the Ergodic Theory of Axiom A Diffeomorphisms," Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin-New York, 1975. |
[7] |
M. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Functional Anal. Appl., 9 (1975), 8-16.
doi: 10.1007/BF01078168. |
[8] |
J. Pesin and M. Brin, Partially hyperbolic dynamical systems, (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212. |
[9] |
M. Brin and G. Stuck, "Introduction to Dynamical Systems," Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511755316. |
[10] |
K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems, Annals of Math. (2), 171 (2010), 451-489. |
[11] |
K. Burns, D. Dolgopyat and Ya. Pesin, Partial hyperbolicity, Lyapunov exponents and stable ergodicity, J. Statist. Phys., 108 (2002), 927-942.
doi: 10.1023/A:1019779128351. |
[12] |
D. Dolgopyat and A Wilkinson, Stable accessibility is $C^1$ dense, in "Geometric Methods in Dynamics (II)", Astérisque 287 (2003), 33-60. |
[13] |
T. Fisher, "On the Structure of Hyperbolic Sets," Ph.D thesis, Northwestern University, 2004. |
[14] |
J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc., 158 (1971), 301-308.
doi: 10.1090/S0002-9947-1971-0283812-3. |
[15] |
H. Furstenberg, "Recurrence in Ergodic Theory and Combinatorial Number Theory," M. B. Porter Lectures, Princeton University Press, Princeton, N.J., 1981. |
[16] |
N. Gourmelon, Adapted metrics for dominated splittings, Ergod. Th. Dynam. Sys., 27 (2007), 1839-1849.
doi: 10.1017/S0143385707000272. |
[17] |
M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977. |
[18] |
V. Niţică and A. Török, An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one, Topology, 40 (2001), 259-278.
doi: 10.1016/S0040-9383(99)00060-9. |
[19] |
C. Pugh and M. Shub, Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc., 2 (2000), 1-52.
doi: 10.1007/s100970050013. |
[20] |
C. Robinson and L. S. Young, Nonabsolutely continuous foliations for an Anosov diffeomorphism, Invent. Math., 61 (1980), 159-176.
doi: 10.1007/BF01390119. |
[21] |
F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics, in "Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow," 35-87, Fields Inst. Commun., 51, Amer. Math. Soc., 2007. |
[22] |
A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms,, \arXiv{0809.4862}., ().
|
[23] |
Z. Xia, Hyperbolic invariant sets with positive measures, Discrete Contin. Dyn. Syst., 15 (2006), 811-818.
doi: 10.3934/dcds.2006.15.811. |
[1] |
Carlos H. Vásquez. Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents. Journal of Modern Dynamics, 2009, 3 (2) : 233-251. doi: 10.3934/jmd.2009.3.233 |
[2] |
Keith Burns, Dmitry Dolgopyat, Yakov Pesin, Mark Pollicott. Stable ergodicity for partially hyperbolic attractors with negative central exponents. Journal of Modern Dynamics, 2008, 2 (1) : 63-81. doi: 10.3934/jmd.2008.2.63 |
[3] |
Radu Saghin. Volume growth and entropy for $C^1$ partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3789-3801. doi: 10.3934/dcds.2014.34.3789 |
[4] |
Keith Burns, Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Anna Talitskaya, Raúl Ures. Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 75-88. doi: 10.3934/dcds.2008.22.75 |
[5] |
R.E. Showalter, Ning Su. Partially saturated flow in a poroelastic medium. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 403-420. doi: 10.3934/dcdsb.2001.1.403 |
[6] |
Michael Brin, Dmitri Burago, Sergey Ivanov. Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus. Journal of Modern Dynamics, 2009, 3 (1) : 1-11. doi: 10.3934/jmd.2009.3.1 |
[7] |
Dubi Kelmer. Quantum ergodicity for products of hyperbolic planes. Journal of Modern Dynamics, 2008, 2 (2) : 287-313. doi: 10.3934/jmd.2008.2.287 |
[8] |
François Ledrappier, Seonhee Lim. Volume entropy of hyperbolic buildings. Journal of Modern Dynamics, 2010, 4 (1) : 139-165. doi: 10.3934/jmd.2010.4.139 |
[9] |
Mauricio Poletti. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5163-5188. doi: 10.3934/dcds.2018228 |
[10] |
Yunhua Zhou. The local $C^1$-density of stable ergodicity. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2621-2629. doi: 10.3934/dcds.2013.33.2621 |
[11] |
David Burguet, Todd Fisher. Symbolic extensionsfor partially hyperbolic dynamical systems with 2-dimensional center bundle. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2253-2270. doi: 10.3934/dcds.2013.33.2253 |
[12] |
Xinsheng Wang, Weisheng Wu, Yujun Zhu. Local unstable entropy and local unstable pressure for random partially hyperbolic dynamical systems. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 81-105. doi: 10.3934/dcds.2020004 |
[13] |
Pablo G. Barrientos, Artem Raibekas. Robustly non-hyperbolic transitive symplectic dynamics. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 5993-6013. doi: 10.3934/dcds.2018259 |
[14] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures. A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms. Electronic Research Announcements, 2007, 14: 74-81. doi: 10.3934/era.2007.14.74 |
[15] |
Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037 |
[16] |
Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419 |
[17] |
Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271 |
[18] |
Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68 |
[19] |
Dmitry Dolgopyat. The work of Federico Rodriguez Hertz on ergodicity of dynamical systems. Journal of Modern Dynamics, 2016, 10: 175-189. doi: 10.3934/jmd.2016.10.175 |
[20] |
Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]