May  2012, 32(5): 1449-1463. doi: 10.3934/dcds.2012.32.1449

Dynamic growth estimates of maximum vorticity for 3D incompressible Euler equations and the SQG model

1. 

Caltech, Applied and Comput. Math, 9-94, Pasadena, CA 91125, United States, United States

Received  March 2011 Revised  May 2011 Published  January 2012

By performing estimates on the integral of the absolute value of vorticity along a local vortex line segment, we establish a relatively sharp dynamic growth estimate of maximum vorticity under some assumptions on the local geometric regularity of the vorticity vector. Our analysis applies to both the 3D incompressible Euler equations and the surface quasi-geostrophic model (SQG). As an application of our vorticity growth estimate, we apply our result to the 3D Euler equation with the two anti-parallel vortex tubes initial data considered by Hou-Li [12]. Under some additional assumption on the vorticity field, which seems to be consistent with the computational results of [12], we show that the maximum vorticity can not grow faster than double exponential in time. Our analysis extends the earlier results by Cordoba-Fefferman [6, 7] and Deng-Hou-Yu [8, 9].
Citation: Thomas Y. Hou, Zuoqiang Shi. Dynamic growth estimates of maximum vorticity for 3D incompressible Euler equations and the SQG model. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1449-1463. doi: 10.3934/dcds.2012.32.1449
References:
[1]

J. T. Beale, T. Kato and A. J. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., 94 (1984), 61-66. doi: 10.1007/BF01212349.

[2]

P. Constantin, C. Fefferman and A. Majda, Geometric constraints on potentially singular solutions for the 3-D Euler equation, Commun. PDE, 21 (1996), 559-571.

[3]

P. Constantin, A. J. Majda and E. G. Tabak, Singular front formation in a model for quasigeostrophic flow, Phys. Fluids, 6 (1994), 9-11. doi: 10.1063/1.868050.

[4]

P. Constantin, Q. Nie and N. Schörghofer, Nonsingular surface quasi- geostrophic flow, Phys. Lett. A, 241 (1998), 168-172. doi: 10.1016/S0375-9601(98)00108-X.

[5]

D. Cordoba, Nonexistence of simple hyperbolic bolw-up for the quasi-geostrophic equation, Ann. of Math. (2), 148 (1998), 1135-1152. doi: 10.2307/121037.

[6]

D. Cordoba and C. Fefferman, On the collapse of tubes carried by 3D incompressible flows, Commun. Math. Phys., 222 (2001), 293-298. doi: 10.1007/s002200100502.

[7]

D. Cordoba and C. Fefferman, Growth of solutions for QG and 2D Euler equations, J. Amer. Math. Soc., 15 (2002), 665-670. doi: 10.1090/S0894-0347-02-00394-6.

[8]

J. Deng, T. Y. Hou and X. Yu, Geometric properties and nonblowup of 3D incompressible Euler flow, Comm. PDE, 30 (2005), 225-243. doi: 10.1081/PDE-200044488.

[9]

J. Deng, T. Y. Hou and X. Yu, Improved geometric conditions for non-blowup of the 3D incompressible Euler equation, Comm. PDE, 31 (2006), 293-306. doi: 10.1080/03605300500358152.

[10]

J. Deng, T. Y. Hou, R. Li and X. Yu, Level set dynamics and non-blowup of the 2D quasi-geostrophic equation, Methods and Applications of Analysis, 13 (2006), 157-180.

[11]

T. Y. Hou, Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier-Stokes equations, Acta Numerica, 18 (2009), 277-346. doi: 10.1017/S0962492906420018.

[12]

T. Y. Hou and R. Li, Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations, J. Nonlinear Science, 16 (2006), 639-664. doi: 10.1007/s00332-006-0800-3.

[13]

T. Y. Hou and R. Li, Blowup or no blowup? The interplay between theory and numerics, Phisica D, 237 (2008), 1937-1944. doi: 10.1016/j.physd.2008.01.018.

[14]

R. M. Kerr, Evidence for a singularity of the three-dimensional, incompressible Euler equations, Phys. Fluids A, 5 (1993), 1725-1746. doi: 10.1063/1.858849.

[15]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, Cambridge, 2002.

[16]

K. Ohkitani and M. Yamada, Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow, Phys. Fluids, 9 (1997), 876-882.

show all references

References:
[1]

J. T. Beale, T. Kato and A. J. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., 94 (1984), 61-66. doi: 10.1007/BF01212349.

[2]

P. Constantin, C. Fefferman and A. Majda, Geometric constraints on potentially singular solutions for the 3-D Euler equation, Commun. PDE, 21 (1996), 559-571.

[3]

P. Constantin, A. J. Majda and E. G. Tabak, Singular front formation in a model for quasigeostrophic flow, Phys. Fluids, 6 (1994), 9-11. doi: 10.1063/1.868050.

[4]

P. Constantin, Q. Nie and N. Schörghofer, Nonsingular surface quasi- geostrophic flow, Phys. Lett. A, 241 (1998), 168-172. doi: 10.1016/S0375-9601(98)00108-X.

[5]

D. Cordoba, Nonexistence of simple hyperbolic bolw-up for the quasi-geostrophic equation, Ann. of Math. (2), 148 (1998), 1135-1152. doi: 10.2307/121037.

[6]

D. Cordoba and C. Fefferman, On the collapse of tubes carried by 3D incompressible flows, Commun. Math. Phys., 222 (2001), 293-298. doi: 10.1007/s002200100502.

[7]

D. Cordoba and C. Fefferman, Growth of solutions for QG and 2D Euler equations, J. Amer. Math. Soc., 15 (2002), 665-670. doi: 10.1090/S0894-0347-02-00394-6.

[8]

J. Deng, T. Y. Hou and X. Yu, Geometric properties and nonblowup of 3D incompressible Euler flow, Comm. PDE, 30 (2005), 225-243. doi: 10.1081/PDE-200044488.

[9]

J. Deng, T. Y. Hou and X. Yu, Improved geometric conditions for non-blowup of the 3D incompressible Euler equation, Comm. PDE, 31 (2006), 293-306. doi: 10.1080/03605300500358152.

[10]

J. Deng, T. Y. Hou, R. Li and X. Yu, Level set dynamics and non-blowup of the 2D quasi-geostrophic equation, Methods and Applications of Analysis, 13 (2006), 157-180.

[11]

T. Y. Hou, Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier-Stokes equations, Acta Numerica, 18 (2009), 277-346. doi: 10.1017/S0962492906420018.

[12]

T. Y. Hou and R. Li, Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations, J. Nonlinear Science, 16 (2006), 639-664. doi: 10.1007/s00332-006-0800-3.

[13]

T. Y. Hou and R. Li, Blowup or no blowup? The interplay between theory and numerics, Phisica D, 237 (2008), 1937-1944. doi: 10.1016/j.physd.2008.01.018.

[14]

R. M. Kerr, Evidence for a singularity of the three-dimensional, incompressible Euler equations, Phys. Fluids A, 5 (1993), 1725-1746. doi: 10.1063/1.858849.

[15]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, Cambridge, 2002.

[16]

K. Ohkitani and M. Yamada, Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow, Phys. Fluids, 9 (1997), 876-882.

[1]

Ming Lu, Yi Du, Zheng-An Yao. Blow-up phenomena for the 3D compressible MHD equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1835-1855. doi: 10.3934/dcds.2012.32.1835

[2]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[3]

Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093

[4]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[5]

Yue Cao. Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28 (1) : 27-46. doi: 10.3934/era.2020003

[6]

Anthony Suen. Corrigendum: A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1387-1390. doi: 10.3934/dcds.2015.35.1387

[7]

Anthony Suen. A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3791-3805. doi: 10.3934/dcds.2013.33.3791

[8]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

[9]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[10]

Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006

[11]

Franco Flandoli, Dejun Luo. Euler-Lagrangian approach to 3D stochastic Euler equations. Journal of Geometric Mechanics, 2019, 11 (2) : 153-165. doi: 10.3934/jgm.2019008

[12]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[13]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[14]

John A. D. Appleby, Denis D. Patterson. Blow-up and superexponential growth in superlinear Volterra equations. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3993-4017. doi: 10.3934/dcds.2018174

[15]

Alexei Ilyin, Anna Kostianko, Sergey Zelik. Trajectory attractors for 3D damped Euler equations and their approximation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2275-2288. doi: 10.3934/dcdss.2022051

[16]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[17]

Michael Röckner, Rongchan Zhu, Xiangchan Zhu. A remark on global solutions to random 3D vorticity equations for small initial data. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4021-4030. doi: 10.3934/dcdsb.2019048

[18]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[19]

Ning Ju. The finite dimensional global attractor for the 3D viscous Primitive Equations. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7001-7020. doi: 10.3934/dcds.2016104

[20]

Dongho Chae. On the blow-up problem for the Euler equations and the Liouville type results in the fluid equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1139-1150. doi: 10.3934/dcdss.2013.6.1139

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]