Citation: |
[1] |
L. Barreira and Ya. Pesin, "Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents," Encyclopedia of Math. and Its Appl., 115, Cambridge Univ. Press, Cambridge, 2007. |
[2] |
L. Barreira and C. Valls, Existence of stable manifolds for nonuniformly hyperbolic $C^1$ dynamics, Discrete Contin. Dyn. Syst., 16 (2006), 307-327.doi: 10.3934/dcds.2006.16.307. |
[3] |
L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations," Lect. Notes in Math., 1926, Springer, Berlin, 2008. |
[4] |
C. Chicone, "Ordinary Differential Equations with Applications," Second edition, Texts in Applied Mathematics, 34, Springer, New York, 2006. |
[5] |
A. Fathi, M. Herman and J.-C. Yoccoz, A proof of Pesin's stable manifold theorem, in "Geometric Dynamics" (ed. J. Palis, Rio de Janeiro, 1981), Lect. Notes. in Math., 1007, Springer, Berlin, (1983), 177-215. |
[6] |
R. Mañé, Lyapounov exponents and stable manifolds for compact transformations, in "Geometric Dynamics" (ed. J. Palis, Rio de Janeiro, 1981), Lect. Notes in Math., 1007, Springer, Berlin, (1983), 522-577. |
[7] |
V. Oseledec, A multiplicative ergodic theorem. Charactersitc Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč., 19 (1968), 179-210. |
[8] |
Ja. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents, Izv. Akad. Nauk SSSR Ser. Mat., 40 (1976), 1332-1379. |
[9] |
Ja. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk, 32 (1977), 55-114, 287. |
[10] |
Ja. Pesin, Geodesic flows on closed Riemannian manifolds without focal points, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 1252-1288, 1447. |
[11] |
C. Pugh and M. Shub, Ergodic attractors, Trans. Amer. Math. Soc., 312 (1989), 1-54.doi: 10.1090/S0002-9947-1989-0983869-1. |
[12] |
D. Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 27-58. |
[13] |
D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math. (2), 115 (1982), 243-290.doi: 10.2307/1971392. |