May  2012, 32(5): 1557-1574. doi: 10.3934/dcds.2012.32.1557

Periodic and subharmonic solutions for duffing equation with a singularity

1. 

Dept. of Math., Zhengzhou University, Zhengzhou 450001

Received  December 2010 Revised  April 2011 Published  January 2012

This paper is devoted to the existence and multiplicity of periodic and subharmonic solutions for a superlinear Duffing equation with a singularity. In this manner, various preceding theorems are improved and sharpened. Our proof is based on a generalized version of the Poincaré-Birkhoff twist theorem.
Citation: Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557
References:
[1]

P. Le Calvez and J. Wang, Some remarks on the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc., 138 (2010), 703-715. doi: 10.1090/S0002-9939-09-10105-3.

[2]

T. R. Ding, "Applications of Qualitative Methods of Ordinary Differential Equations," Higher Education Press, Beijing, 2004.

[3]

T. R. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential, J. Differential Equations, 97 (1992), 328-378. doi: 10.1016/0022-0396(92)90076-Y.

[4]

T. R. Ding, R. Iannacci and F. Zanolin, Existence and multiplicity results for periodic solution of semilinear Duffing equation, J. Differential Equations, 105 (1993), 364-409. doi: 10.1006/jdeq.1993.1093.

[5]

W. Y. Ding, A generalization of the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc., 88 (1983), 341-346. doi: 10.1090/S0002-9939-1983-0695272-2.

[6]

A. Fonda, R. Manásevich and F. Zanolin, Subharmonic solutions for some second-order differential equatins with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1311. doi: 10.1137/0524074.

[7]

A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth, Nonlinear Analy., 74 (2011), 2485-2496. doi: 10.1016/j.na.2010.12.004.

[8]

P. Habets and L. Sanchez, Periodic solution of some Liénard equations with singularities, Proc. Amer. Math. Soc., 109 (1990), 1035-1044. doi: 10.2307/2048134.

[9]

D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations, J. Differential Equations, 211 (2005), 282-302. doi: 10.1016/j.jde.2004.10.031.

[10]

Z. Opial, Sur les périodes des solutions de l'équation différentielle $ x''+g(x)= 0$, Ann. Polon. Math., 10 (1961), 49-72.

[11]

M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equations with singularities, Proc. R. Soc. Edinb. Sect. A, 120 (1992), 231-243. doi: 10.1017/S030821050003211X.

[12]

M. del Pino and R. Manásevich, Infinitely many $T$-periodic solutions for a problem ariding in nonlinear elasticity, J. Differential Equations, 103 (1993), 260-277. doi: 10.1006/jdeq.1993.1050.

[13]

J. L. Ren, Z. B. Cheng and S. Siegmund, Positive periodic solution for Brillouin electron beam focusing system,, Discrete Continuous Dynam. Systems B, (). 

[14]

S. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Anal., 3 (1979), 897-904. doi: 10.1016/0362-546X(79)90057-9.

[15]

P. J. Torres, Weak singularities may help periodic solutions to exist, J. Differential Equations, 232 (2007), 277-284. doi: 10.1016/j.jde.2006.08.006.

[16]

Z.-H. Wang, Periodic solutions of the second-order differential equations with singularity, Nonlinear Anal., 58 (2004), 319-331. doi: 10.1016/j.na.2004.05.006.

[17]

J. Xia and Z.-H. Wang, Existence and multiplicity of periodic solutions for the Duffing equation with singularity, Proc. R. Soc. Edinb. Sect. A, 137 (2007), 625-645.

show all references

References:
[1]

P. Le Calvez and J. Wang, Some remarks on the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc., 138 (2010), 703-715. doi: 10.1090/S0002-9939-09-10105-3.

[2]

T. R. Ding, "Applications of Qualitative Methods of Ordinary Differential Equations," Higher Education Press, Beijing, 2004.

[3]

T. R. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential, J. Differential Equations, 97 (1992), 328-378. doi: 10.1016/0022-0396(92)90076-Y.

[4]

T. R. Ding, R. Iannacci and F. Zanolin, Existence and multiplicity results for periodic solution of semilinear Duffing equation, J. Differential Equations, 105 (1993), 364-409. doi: 10.1006/jdeq.1993.1093.

[5]

W. Y. Ding, A generalization of the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc., 88 (1983), 341-346. doi: 10.1090/S0002-9939-1983-0695272-2.

[6]

A. Fonda, R. Manásevich and F. Zanolin, Subharmonic solutions for some second-order differential equatins with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1311. doi: 10.1137/0524074.

[7]

A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth, Nonlinear Analy., 74 (2011), 2485-2496. doi: 10.1016/j.na.2010.12.004.

[8]

P. Habets and L. Sanchez, Periodic solution of some Liénard equations with singularities, Proc. Amer. Math. Soc., 109 (1990), 1035-1044. doi: 10.2307/2048134.

[9]

D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations, J. Differential Equations, 211 (2005), 282-302. doi: 10.1016/j.jde.2004.10.031.

[10]

Z. Opial, Sur les périodes des solutions de l'équation différentielle $ x''+g(x)= 0$, Ann. Polon. Math., 10 (1961), 49-72.

[11]

M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equations with singularities, Proc. R. Soc. Edinb. Sect. A, 120 (1992), 231-243. doi: 10.1017/S030821050003211X.

[12]

M. del Pino and R. Manásevich, Infinitely many $T$-periodic solutions for a problem ariding in nonlinear elasticity, J. Differential Equations, 103 (1993), 260-277. doi: 10.1006/jdeq.1993.1050.

[13]

J. L. Ren, Z. B. Cheng and S. Siegmund, Positive periodic solution for Brillouin electron beam focusing system,, Discrete Continuous Dynam. Systems B, (). 

[14]

S. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Anal., 3 (1979), 897-904. doi: 10.1016/0362-546X(79)90057-9.

[15]

P. J. Torres, Weak singularities may help periodic solutions to exist, J. Differential Equations, 232 (2007), 277-284. doi: 10.1016/j.jde.2006.08.006.

[16]

Z.-H. Wang, Periodic solutions of the second-order differential equations with singularity, Nonlinear Anal., 58 (2004), 319-331. doi: 10.1016/j.na.2004.05.006.

[17]

J. Xia and Z.-H. Wang, Existence and multiplicity of periodic solutions for the Duffing equation with singularity, Proc. R. Soc. Edinb. Sect. A, 137 (2007), 625-645.

[1]

Julián López-Gómez, Eduardo Muñoz-Hernández, Fabio Zanolin. On the applicability of the poincaré–Birkhoff twist theorem to a class of planar periodic predator-prey models. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2393-2419. doi: 10.3934/dcds.2020119

[2]

Huiping Jin. Boundedness in a class of duffing equations with oscillating potentials via the twist theorem. Communications on Pure and Applied Analysis, 2011, 10 (1) : 179-192. doi: 10.3934/cpaa.2011.10.179

[3]

Yanmin Niu, Xiong Li. An application of Moser's twist theorem to superlinear impulsive differential equations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 431-445. doi: 10.3934/dcds.2019017

[4]

Kai Tao. Strong Birkhoff ergodic theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1495-1533. doi: 10.3934/dcds.2021162

[5]

Denis Blackmore, Jyoti Champanerkar, Chengwen Wang. A generalized Poincaré-Birkhoff theorem with applications to coaxial vortex ring motion. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 15-33. doi: 10.3934/dcdsb.2005.5.15

[6]

Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014

[7]

Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022045

[8]

Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313

[9]

William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control and Related Fields, 2020, 10 (1) : 27-45. doi: 10.3934/mcrf.2019028

[10]

Anja Randecker, Giulio Tiozzo. Cusp excursion in hyperbolic manifolds and singularity of harmonic measure. Journal of Modern Dynamics, 2021, 17: 183-211. doi: 10.3934/jmd.2021006

[11]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[12]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[13]

Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857

[14]

Zhaosheng Feng, Goong Chen, Sze-Bi Hsu. A qualitative study of the damped duffing equation and applications. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1097-1112. doi: 10.3934/dcdsb.2006.6.1097

[15]

S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660

[16]

Daniel Núñez, Pedro J. Torres. Periodic solutions of twist type of an earth satellite equation. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 303-306. doi: 10.3934/dcds.2001.7.303

[17]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[18]

Vassilis Rothos. Subharmonic bifurcations of localized solutions of a discrete NLS equation. Conference Publications, 2005, 2005 (Special) : 756-767. doi: 10.3934/proc.2005.2005.756

[19]

Armengol Gasull, Víctor Mañosa. Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 651-670. doi: 10.3934/dcdsb.2019259

[20]

D. P. Demuner, M. Federson, C. Gutierrez. The Poincaré-Bendixson Theorem on the Klein bottle for continuous vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 495-509. doi: 10.3934/dcds.2009.25.495

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (137)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]