Citation: |
[1] |
S. Agronsky and J. G. Ceder, Each Peano subspace of $E^k$ is an $\omega$-limit set, Real Anal. Exchange, 17 (1991/92), 371-378. |
[2] |
Ll. Alsedà, S. Kolyada, J. Llibre and Ľ. Snoha, Entropy and periodic points for transitive maps, Trans. Amer. Math. Soc., 351 (1999), 1551-1573.doi: 10.1090/S0002-9947-99-02077-2. |
[3] |
F. Balibrea and Ľ. Snoha, Topological entropy of Devaney chaotic maps, Topology Appl., 133 (2003), 225-239.doi: 10.1016/S0166-8641(03)00090-7. |
[4] |
R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.doi: 10.1090/S0002-9947-1971-0274707-X. |
[5] |
M. Dirbák, Extensions of dynamical systems without increasing the entropy, Nonlinearity, 21 (2008), 2693-2713.doi: 10.1088/0951-7715/21/11/011. |
[6] |
M. Dirbák and P. Maličký, On the construction of non-invertible minimal skew products, J. Math. Anal. Appl., 375 (2011), 436-442.doi: 10.1016/j.jmaa.2010.09.042. |
[7] |
D. van Dantzig and B. L. van der Waerden, Über metrisch homogene Räume, Abhandlungen Hamburg, 6 (1928), 367-376. |
[8] |
S. Glasner and B. Weiss, On the construction of minimal skew products, Israel J. Math., 34 (1979), 321-336.doi: 10.1007/BF02760611. |
[9] |
K. H. Hofmann and S. A. Morris, "The Structure of Compact Groups. A Primer for the Student--a Handbook for the Expert," Second revised and augmented edition, de Gruyter Studies in Mathematics, 25, Walter de Gruyter & Co., Berlin, 2006. |
[10] |
S. Kolyada and M. Matviichuk, On extensions of transitive maps, Discrete Contin. Dyn. Syst., 30 (2011), 767-777. |
[11] |
S. Kolyada, Ľ. Snoha and S. Trofimchuk, Noninvertible minimal maps, Fund. Math., 168 (2001), 141-163.doi: 10.4064/fm168-2-5. |
[12] |
K. Kuratowski, "Topology," Vol. I, New edition, revised and augmented, Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. |