Citation: |
[1] |
A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.doi: 10.1016/0022-1236(73)90051-7. |
[2] |
A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404.doi: 10.1142/S021919970800282X. |
[3] |
T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906. |
[4] |
_____, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322. |
[5] |
T. D'Aprile and J. Wei, Layered solutions for a semilinear elliptic system in a ball, J. Differential Equations, 226 (2006), 269-294.doi: 10.1016/j.jde.2005.12.009. |
[6] |
_____, Clustered solutions around harmonic centers to a coupled elliptic system, Ann. Inst. H. Poincaré Anal. Non Lin\'eaire, 24 (2007), 605-628. |
[7] |
T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9), 55 (1976), 269-296. |
[8] |
P. D'Avenia and L. Pisani, Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations, Electron. J. Differential Equations, 2002, 13 pp. |
[9] |
P. D'Avenia, L. Pisani and G. Siciliano, Klein-Gordon-Maxwell systems in a bounded domain, Discrete Contin. Dyn. Syst., 26 (2010), 135-149. |
[10] |
_____, Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems, Nonlinear Anal., 71 (2009), e1985-e1995. |
[11] |
A. Azzollini, P. D'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779-791. |
[12] |
A. Azzollini, L. Pisani and A. Pomponio, Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 449-463.doi: 10.1017/S0308210509001814. |
[13] |
A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. |
[14] |
_____, Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations, Topol. Methods Nonlinear Anal., 35 (2010), 33-42. |
[15] |
P. Bechouche, N. J. Mauser and S. Selberg, Nonrelativistic limit of Klein-Gordon-Maxwell to Schrödinger-Poisson, Amer. J. Math., 126 (2004), 31-64.doi: 10.1353/ajm.2004.0001. |
[16] |
V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon field equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.doi: 10.1142/S0129055X02001168. |
[17] |
_____, Solitary waves in the nonlinear wave equation and in gauge theories, J. Fixed Point Theory Appl., 1 (2007), 61-86.doi: 10.1007/s11784-006-0008-z. |
[18] |
_____, Solitary waves in abelian gauge theories, Adv. Nonlinear Stud., 8 (2008), 327-352. |
[19] |
_____, Existence of hylomorphic solitary waves in Klein-Gordon and in Klein-Gordon-Maxwell equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 20 (2009), 243-279. |
[20] |
_____, Hylomorphic vortices in abelian gauge theories, preprint, 2009. |
[21] |
_____, Spinning $Q$-balls for the Klein-Gordon-Maxwell equations, Commun. Math. Phys., 295 (2010), 639-668.doi: 10.1007/s00220-010-0985-z. |
[22] |
H. Brézis and L. Nirenberg, Positive solutions of nonlinear ellitpic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.doi: 10.1002/cpa.3160360405. |
[23] |
D. Cassani, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations, Nonlinear Anal., 58 (2004), 733-747.doi: 10.1016/j.na.2003.05.001. |
[24] |
Y. Choquet-Bruhat, Solution globale des équations de Maxwell-Dirac-Klein-Gordon, Rend. Circ. Mat. Palermo (2), 31 (1982), 267-288.doi: 10.1007/BF02844359. |
[25] |
E. Deumens, The Klein-Gordon-Maxwell nonlinear system of equations, Solitons and Coherent Structures (Santa Barbara, Calif., 1985), Physica D., 18 (1986), 371-373.doi: 10.1016/0167-2789(86)90201-0. |
[26] |
O. Druet, Elliptic equations with critical Sobolev exponents in dimension $3$, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 19 (2002), 125-142. |
[27] |
O. Druet and E. Hebey, Existence and a priori bounds for electrostatic Klein-Gordon-Maxwell systems in fully inhomogeneous spaces, Commun. Contemp. Math., 12 (2010), 831-869.doi: 10.1142/S0219199710004007. |
[28] |
O. Druet, E. Hebey and J. Vétois, Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian, J. Funct. Anal., 258 (2010), 999-1059.doi: 10.1016/j.jfa.2009.07.004. |
[29] |
D. Eardley and V. Moncrief, The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. I. Local existence and smoothness, Comm. Math. Phys., 83 (1982), 171-191.doi: 10.1007/BF01976040. |
[30] |
V. Georgiev and N. Visciglia, Solitary waves for the Klein-Gordon-Maxwell system with external Coulomb potential, J. Math. Pures Appl. (9), 84 (2005), 957-983.doi: 10.1016/j.matpur.2004.09.016. |
[31] |
E. Hebey and T. T. Truong, Static Klein-Gordon-Maxwell-Proca systems in $4$-dimensional closed manifolds, J. Reine Angew. Math., to appear. |
[32] |
E. Hebey and M. Vaugon, The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds, Duke Math. J., 79 (1995), 235-279.doi: 10.1215/S0012-7094-95-07906-X. |
[33] |
_____, Meilleures constantes dans le théorème d'inclusion de Sobolev, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 13 (1996), 57-93. |
[34] |
I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595. |
[35] |
M. Keel, T. Roy and T. Tao, Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm, preprint, 2009. |
[36] |
S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.doi: 10.1215/S0012-7094-94-07402-4. |
[37] |
S. Klainerman and D. Tataru, On the optimal regularity for Yang-Mills equations in $\mathbbR ^{4+1}$, J. Amer. Math. Soc., 12 (1999), 93-116.doi: 10.1090/S0894-0347-99-00282-9. |
[38] |
E. Long, Existence and stability of solitary waves in non-linear Klein-Gordon-Maxwell equations, Rev. Math. Phys., 18 (2006), 747-779.doi: 10.1142/S0129055X06002784. |
[39] |
E. Long and D. Stuart, Effective dynamics for solitons in the nonlinear Klein-Gordon-Maxwell system and the Lorentz force law, Rev. Math. Phys., 21 (2009), 459-510.doi: 10.1142/S0129055X09003669. |
[40] |
M. Machedon and J. Sterbenz, Almost optimal local well-posedness for the $(3+1)$-dimensional Maxwell-Klein-Gordon equations, J. Amer. Math. Soc., 17 (2004), 297-359.doi: 10.1090/S0894-0347-03-00445-4. |
[41] |
N. Masmoudi and K. Nakanishi, Uniqueness of finite energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations, Comm. Math. Phys., 243 (2003), 123-136.doi: 10.1007/s00220-003-0951-0. |
[42] |
_____, Nonrelativistic limit from Maxwell-Klein-Gordon and Maxwell-Dirac to Poisson-Schrödinger, Int. Math. Res. Not., 2003, 697-734. |
[43] |
D. Mugnai, Coupled Klein-Gordon and Born-Infeld-type equations: Looking for solitary waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 1519-1527.doi: 10.1098/rspa.2003.1267. |
[44] |
D. Mugnai, Solitary waves in abelian gauge theories with strongly nonlinear potentials, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 27 (2010), 1055-1071. |
[45] |
D. M. Petrescu, Time decay of solutions of coupled Maxwell-Klein-Gordon equations, Commun. Math. Phys., 179 (1996), 11-23.doi: 10.1007/BF02103714. |
[46] |
I. Rodnianski and T. Tao, Global regularity for the Maxwell-Klein-Gordon equation with small critical Sobolev norm in high dimensions, Comm. Math. Phys., 251 (2004), 377-426.doi: 10.1007/s00220-004-1152-1. |
[47] |
D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations: Concentration around a sphere, Math. Models Methods Appl. Sci., 15 (2005), 141-164.doi: 10.1142/S0218202505003939. |
[48] |
R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., 20 (1984), 479-495. |
[49] |
S. Selberg, Almost optimal local well-posedness of the Klein-Gordon-Maxwell system in $1+4$ dimensions, Comm. Part. Diff. Eq., 27 (2002), 1183-1227. |
[50] |
S. Selberg and A. Tesfahun, On the Maxwell-Klein-Gordon equations in Lorenz gauge, Proceedings of the International Congress of Mathematical Physics, 2009. |
[51] |
W. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162.doi: 10.1007/BF01626517. |
[52] |
T. Tao, Global behaviour of nonlinear dispersive and wave equations, in "Current Developments in Mathematics," 2006, Int. Press, Somerville, MA, (2008), 255-340. |