May  2012, 32(5): 1881-1899. doi: 10.3934/dcds.2012.32.1881

Periodic perturbation of quadratic systems with two infinite heteroclinic cycles

1. 

Departamento de Matemática, Estatística e Computação, Faculdade de Ciências e Tecnologia, Univ Estadual Paulista - UNESP, Cx.Postal 266, 19060-900, Presidente Prudente, SP, Brazil

Received  November 2010 Revised  March 2011 Published  January 2012

We study periodic perturbations of planar quadratic vector fields having infinite heteroclinic cycles, consisting of an invariant straight line joining two saddle points at infinity and an arc of orbit also at infinity. The global study concerning the infinity of the perturbed system is performed by means of the Poincaré compactification in polar coordinates, from which we obtain a system defined on a set equivalent to a solid torus in $\mathbb{R}^3$, whose boundary plays the role of the infinity. It is shown that for certain type of periodic perturbation, there exist two differentiable curves in the parameter space for which the perturbed system presents heteroclinic tangencies and transversal intersections between the stable and unstable manifolds of two normally hyperbolic lines of singularities at infinity. The transversality of the manifolds is proved using the Melnikov method and implies, via the Birkhoff-Smale Theorem, in a complex dynamical behavior of the perturbed system solutions in a finite part of the phase space. Numerical simulations are performed for a particular example in order to illustrate this behavior, which could be called "the chaos arising from infinity", because it depends on the global structure of the quadratic system, including the points at infinity.
Citation: Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881
References:
[1]

J. Differential Equations, 104 (1993), 215-242.  Google Scholar

[2]

Texts in Appl. Math., 34, Springer-Verlag, New York, 1999.  Google Scholar

[3]

J. Differential Equations, 61 (1986), 398-418. doi: 10.1016/0022-0396(86)90113-0.  Google Scholar

[4]

J. Differential Equations, 37 (1980), 351-373. doi: 10.1016/0022-0396(80)90104-7.  Google Scholar

[5]

J. Differential Equations, 2 (1966), 293-304. doi: 10.1016/0022-0396(66)90070-2.  Google Scholar

[6]

J. Differential Equations, 116 (1995), 468-483. doi: 10.1006/jdeq.1995.1044.  Google Scholar

[7]

J. Differential Equations, 110 (1994), 86-133. doi: 10.1006/jdeq.1994.1061.  Google Scholar

[8]

Universitext, Springer-Verlag, Berlin, 2006.  Google Scholar

[9]

J. Math. Anal. Appl., 269 (2002), 332-351. doi: 10.1016/S0022-247X(02)00027-6.  Google Scholar

[10]

Revised and corrected reprint of the 1983 original, Appl. Math. Sci., 42, Springer-Verlag, New York, 1990.  Google Scholar

[11]

Nonlinear Anal., 2 (1978), 77-84. doi: 10.1016/0362-546X(78)90043-3.  Google Scholar

[12]

Nonlinearity, 18 (2005), 305-330. doi: 10.1088/0951-7715/18/1/016.  Google Scholar

[13]

Trudy Moskov. Mat. Obšč., 12 (1963), 3-52.  Google Scholar

[14]

An. Acad. Brasil. Ciênc., 74 (2002), 193-198.  Google Scholar

[15]

Qual. Theory Dyn. Syst., 5 (2004), 301-336. doi: 10.1007/BF02972684.  Google Scholar

[16]

J. Differential Equations, 196 (2004), 169-208.  Google Scholar

[17]

in "Oscillations, Bifurcation and Chaos" (Toronto, Ont., 1986), CMS Conf. Proc., 8, Amer. Math. Soc., Providence, RI, (1987), 665-685.  Google Scholar

[18]

J. Math. Anal. Appl., 124 (1987), 82-97. doi: 10.1016/0022-247X(87)90026-6.  Google Scholar

[19]

Texts in Appl. Math., 2, Springer-Verlag, New York, 1990.  Google Scholar

show all references

References:
[1]

J. Differential Equations, 104 (1993), 215-242.  Google Scholar

[2]

Texts in Appl. Math., 34, Springer-Verlag, New York, 1999.  Google Scholar

[3]

J. Differential Equations, 61 (1986), 398-418. doi: 10.1016/0022-0396(86)90113-0.  Google Scholar

[4]

J. Differential Equations, 37 (1980), 351-373. doi: 10.1016/0022-0396(80)90104-7.  Google Scholar

[5]

J. Differential Equations, 2 (1966), 293-304. doi: 10.1016/0022-0396(66)90070-2.  Google Scholar

[6]

J. Differential Equations, 116 (1995), 468-483. doi: 10.1006/jdeq.1995.1044.  Google Scholar

[7]

J. Differential Equations, 110 (1994), 86-133. doi: 10.1006/jdeq.1994.1061.  Google Scholar

[8]

Universitext, Springer-Verlag, Berlin, 2006.  Google Scholar

[9]

J. Math. Anal. Appl., 269 (2002), 332-351. doi: 10.1016/S0022-247X(02)00027-6.  Google Scholar

[10]

Revised and corrected reprint of the 1983 original, Appl. Math. Sci., 42, Springer-Verlag, New York, 1990.  Google Scholar

[11]

Nonlinear Anal., 2 (1978), 77-84. doi: 10.1016/0362-546X(78)90043-3.  Google Scholar

[12]

Nonlinearity, 18 (2005), 305-330. doi: 10.1088/0951-7715/18/1/016.  Google Scholar

[13]

Trudy Moskov. Mat. Obšč., 12 (1963), 3-52.  Google Scholar

[14]

An. Acad. Brasil. Ciênc., 74 (2002), 193-198.  Google Scholar

[15]

Qual. Theory Dyn. Syst., 5 (2004), 301-336. doi: 10.1007/BF02972684.  Google Scholar

[16]

J. Differential Equations, 196 (2004), 169-208.  Google Scholar

[17]

in "Oscillations, Bifurcation and Chaos" (Toronto, Ont., 1986), CMS Conf. Proc., 8, Amer. Math. Soc., Providence, RI, (1987), 665-685.  Google Scholar

[18]

J. Math. Anal. Appl., 124 (1987), 82-97. doi: 10.1016/0022-247X(87)90026-6.  Google Scholar

[19]

Texts in Appl. Math., 2, Springer-Verlag, New York, 1990.  Google Scholar

[1]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[2]

Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021117

[3]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[4]

Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021076

[5]

Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021052

[6]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[7]

Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3767-3784. doi: 10.3934/dcdsb.2020256

[8]

Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021127

[9]

Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235

[10]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037

[11]

Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3781-3796. doi: 10.3934/dcds.2021016

[12]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[13]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2993-3020. doi: 10.3934/dcds.2020394

[14]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[15]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[16]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[17]

Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021012

[18]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374

[19]

Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021098

[20]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]