-
Previous Article
Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion
- DCDS Home
- This Issue
-
Next Article
Prescribing the scalar curvature problem on higher-dimensional manifolds
Periodic perturbation of quadratic systems with two infinite heteroclinic cycles
1. | Departamento de Matemática, Estatística e Computação, Faculdade de Ciências e Tecnologia, Univ Estadual Paulista - UNESP, Cx.Postal 266, 19060-900, Presidente Prudente, SP, Brazil |
References:
[1] |
J. Differential Equations, 104 (1993), 215-242. |
[2] |
Texts in Appl. Math., 34, Springer-Verlag, New York, 1999. |
[3] |
J. Differential Equations, 61 (1986), 398-418.
doi: 10.1016/0022-0396(86)90113-0. |
[4] |
J. Differential Equations, 37 (1980), 351-373.
doi: 10.1016/0022-0396(80)90104-7. |
[5] |
J. Differential Equations, 2 (1966), 293-304.
doi: 10.1016/0022-0396(66)90070-2. |
[6] |
J. Differential Equations, 116 (1995), 468-483.
doi: 10.1006/jdeq.1995.1044. |
[7] |
J. Differential Equations, 110 (1994), 86-133.
doi: 10.1006/jdeq.1994.1061. |
[8] |
Universitext, Springer-Verlag, Berlin, 2006. |
[9] |
J. Math. Anal. Appl., 269 (2002), 332-351.
doi: 10.1016/S0022-247X(02)00027-6. |
[10] |
Revised and corrected reprint of the 1983 original, Appl. Math. Sci., 42, Springer-Verlag, New York, 1990. |
[11] |
Nonlinear Anal., 2 (1978), 77-84.
doi: 10.1016/0362-546X(78)90043-3. |
[12] |
Nonlinearity, 18 (2005), 305-330.
doi: 10.1088/0951-7715/18/1/016. |
[13] |
Trudy Moskov. Mat. Obšč., 12 (1963), 3-52. |
[14] |
An. Acad. Brasil. Ciênc., 74 (2002), 193-198. |
[15] |
Qual. Theory Dyn. Syst., 5 (2004), 301-336.
doi: 10.1007/BF02972684. |
[16] |
J. Differential Equations, 196 (2004), 169-208. |
[17] |
in "Oscillations, Bifurcation and Chaos" (Toronto, Ont., 1986), CMS Conf. Proc., 8, Amer. Math. Soc., Providence, RI, (1987), 665-685. |
[18] |
J. Math. Anal. Appl., 124 (1987), 82-97.
doi: 10.1016/0022-247X(87)90026-6. |
[19] |
Texts in Appl. Math., 2, Springer-Verlag, New York, 1990. |
show all references
References:
[1] |
J. Differential Equations, 104 (1993), 215-242. |
[2] |
Texts in Appl. Math., 34, Springer-Verlag, New York, 1999. |
[3] |
J. Differential Equations, 61 (1986), 398-418.
doi: 10.1016/0022-0396(86)90113-0. |
[4] |
J. Differential Equations, 37 (1980), 351-373.
doi: 10.1016/0022-0396(80)90104-7. |
[5] |
J. Differential Equations, 2 (1966), 293-304.
doi: 10.1016/0022-0396(66)90070-2. |
[6] |
J. Differential Equations, 116 (1995), 468-483.
doi: 10.1006/jdeq.1995.1044. |
[7] |
J. Differential Equations, 110 (1994), 86-133.
doi: 10.1006/jdeq.1994.1061. |
[8] |
Universitext, Springer-Verlag, Berlin, 2006. |
[9] |
J. Math. Anal. Appl., 269 (2002), 332-351.
doi: 10.1016/S0022-247X(02)00027-6. |
[10] |
Revised and corrected reprint of the 1983 original, Appl. Math. Sci., 42, Springer-Verlag, New York, 1990. |
[11] |
Nonlinear Anal., 2 (1978), 77-84.
doi: 10.1016/0362-546X(78)90043-3. |
[12] |
Nonlinearity, 18 (2005), 305-330.
doi: 10.1088/0951-7715/18/1/016. |
[13] |
Trudy Moskov. Mat. Obšč., 12 (1963), 3-52. |
[14] |
An. Acad. Brasil. Ciênc., 74 (2002), 193-198. |
[15] |
Qual. Theory Dyn. Syst., 5 (2004), 301-336.
doi: 10.1007/BF02972684. |
[16] |
J. Differential Equations, 196 (2004), 169-208. |
[17] |
in "Oscillations, Bifurcation and Chaos" (Toronto, Ont., 1986), CMS Conf. Proc., 8, Amer. Math. Soc., Providence, RI, (1987), 665-685. |
[18] |
J. Math. Anal. Appl., 124 (1987), 82-97.
doi: 10.1016/0022-247X(87)90026-6. |
[19] |
Texts in Appl. Math., 2, Springer-Verlag, New York, 1990. |
[1] |
Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026 |
[2] |
Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021117 |
[3] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[4] |
Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021076 |
[5] |
Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021052 |
[6] |
Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021089 |
[7] |
Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3767-3784. doi: 10.3934/dcdsb.2020256 |
[8] |
Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021127 |
[9] |
Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235 |
[10] |
Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037 |
[11] |
Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3781-3796. doi: 10.3934/dcds.2021016 |
[12] |
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021074 |
[13] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2993-3020. doi: 10.3934/dcds.2020394 |
[14] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[15] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[16] |
Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238 |
[17] |
Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021012 |
[18] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374 |
[19] |
Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021098 |
[20] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]