Citation: |
[1] |
J. Barral and Y. H. Qu, Localized asymptotic behavior for almost additive potentials, to appear in Discrete Contin. Dyn. Syst., arXiv:1104.1442v1. |
[2] |
A. de Acosta, A general non-convex large deviation result with applications to stochastic equations, Probab. Theory Related Fields, 118 (2000), 483-521.doi: 10.1007/PL00008752. |
[3] |
L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergod. Th. & Dynam. Sys., 16 (1996), 871-927. |
[4] |
L. Barreira, Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures, Discrete Contin. Dyn. Syst., 16 (2006), 279-305.doi: 10.3934/dcds.2006.16.279. |
[5] |
L. Barreira and P. Doutor, Almost additive multifractal analysis, J. Math. Pures Appl. (9), 92 (2009), 1-17.doi: 10.1016/j.matpur.2009.04.006. |
[6] |
L. Barreira, B. Saussol and J. Schmeling, Higher-dimensional multifractal analysis, J. Math. Pures Appl. (9), 81 (2002), 67-91.doi: 10.1016/S0021-7824(01)01228-4. |
[7] |
R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin-New York, 1975. |
[8] |
H. Cajar, "Billingsley Dimension in Probability Spaces," Lecture Notes in Mathemaitcs, 892, Springer-Verlag, Berlin, 1981. |
[9] |
Y.-L. Cao, D.-J. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials, Discrete Contin. Dyn. Syst., 20 (2008), 639-657. |
[10] |
K. J. Falconer, A subadditive thermodynamic formalism for mixing repellers, J. Phys. A, 21 (1988), L737-L742.doi: 10.1088/0305-4470/21/14/005. |
[11] |
A.-H. Fan and D.-J. Feng, On the distribution of long-term time averages on symbolic space, J. Statist. Phys., 99 (2000), 813-856.doi: 10.1023/A:1018643512559. |
[12] |
A.-H. Fan, D.-J. Feng and J. Wu, Recurrence, dimension and entropy, J. London Math. Soc. (2), 64 (2001), 229-244.doi: 10.1017/S0024610701002137. |
[13] |
D.-J. Feng, The variational principle for products of non-negative matrices, Nonlinearity, 17 (2004), 447-457.doi: 10.1088/0951-7715/17/2/004. |
[14] |
D.-J. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials, Commun. Math. Phys., 297 (2010), 1-43.doi: 10.1007/s00220-010-1031-x. |
[15] |
D.-J. Feng and K.-S. Lau, The pressure function for products of non-negative matrices, Math. Res. Lett., 9 (2002), 363-378. |
[16] |
D.-J. Feng, K.-S. Lau and J. Wu, Ergodic limits on the conformal repellers, Adv. Math., 169 (2002), 58-91.doi: 10.1006/aima.2001.2054. |
[17] |
D.-J. Feng and E. Olivier, Multifractal analysis of the weak Gibbs measures and phase transition-Application to some Bernoulli convolutions, Ergod. Th. & Dynam. Sys., 23 (2003), 1751-1784. |
[18] |
D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps, Ergod. Th. & Dynam. Sys., 17 (1997), 147-167. |
[19] |
A. Mummert, The thermodynamic formalism for almost-additive sequences, Discrete Contin. Dyn. Syst., 16 (2006), 435-454.doi: 10.3934/dcds.2006.16.435. |
[20] |
Y. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions, J. Statist. Phys., 86 (1997), 233-275.doi: 10.1007/BF02180206. |
[21] |
Y. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: Motivation, Mathematical Foundation, and Examples, Chaos, 7 (1997), 89-106.doi: 10.1063/1.166242. |
[22] |
D. A. Rand, The singularity spectrum $f(\alpha)$ for cookie-cutters, Ergod. Th. & Dynam. Sys., 9 (1989), 527-541. |
[23] |
R. Rockafellar, "Convex Analysis," Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. |
[24] |
D. Ruelle, "Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics," Encyclopedia of Mathematics and its Applications, 5, Addison-Wesley Publishing Co., Reading, Mass., 1978. |
[25] |
F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets, Ergod. Th. & Dynam. Sys., 23 (2003), 317-348. |