\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Density of orbits in laminations and the space of critical portraits

Abstract Related Papers Cited by
  • Thurston introduced $\sigma_d$-invariant laminations (where $\sigma_d(z)$ coincides with $z^d:\mathbb{S}\to \mathbb{S}$, $d\ge 2$). He defined wandering $k$-gons as sets $T\subset \mathbb{S}$ such that $\sigma_d^n(T)$ consists of $k\ge 3$ distinct points for all $n\ge 0$ and the convex hulls of all the sets $\sigma_d^n(T)$ in the plane are pairwise disjoint. Thurston proved that $\sigma_2$ has no wandering $k$-gons and posed the problem of their existence for $\sigma_d$, $d\ge 3$.
        Call a lamination with wandering $k$-gons a WT-lamination. Denote the set of cubic critical portraits by $\mathcal{A}_3$. A critical portrait, compatible with a WT-lamination, is called a WT-critical portrait; let $\mathcal{WT}_3$ be the set of all of them. It was recently shown by the authors that cubic WT-laminations exist and cubic WT-critical portraits, defining polynomials with condense orbits of vertices of order three in their dendritic Julia sets, are dense and locally uncountable in $\mathcal{A}_3$ ($D\subset X$ is condense in $X$ if $D$ intersects every subcontinuum of $X$). Here we show that $\mathcal{WT}_3$ is a dense first category subset of $\mathcal{A}_3$, that critical portraits, whose laminations have a condense orbit in the topological Julia set, form a residual subset of $\mathcal{A}_3$, and that the existence of a condense orbit in the Julia set $J$ implies that $J$ is locally connected.
    Mathematics Subject Classification: Primary: 37F20; Secondary: 37B45, 37F10, 37F50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Bielefeld, Y. Fisher and J. Hubbard, The classification of critically preperiodic polynomials as dynamical systems, Journal AMS, 5 (1992), 721-762.

    [2]

    A. Blokh, C. Curry and L. OversteegenCubic critical portraits and polynomials with wandering gaps, preprint, arXiv:1003.4467, to appear in Erg. Th. and Dyn. Sys.

    [3]

    A. Blokh, C. Curry and L. Oversteegen, Locally connected models for Julia sets, Advances in Mathematics, 226 (2011), 1621-1661.

    [4]

    A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen and E. TymchatynFixed point theorems for plane continua with applications, preprint, arXiv:1004.0214, to appear in Memoirs of the American Mathematical Society.

    [5]

    A. Blokh and G. Levin, An inequality for laminations, Julia sets and "growing trees'', Erg. Th. and Dyn. Sys., 22 (2002), 63-97.

    [6]

    A. Blokh and L. Oversteegen, Monotone images of Cremer Julia sets, Houston J. Math., 36 (2010), 469-476.

    [7]

    A. Blokh and L. Oversteegen, Wandering gaps for weakly hyperbolic cubic polynomials, in, "Complex Dynamics'' (ed. D. Schleicher), A K Peters, Wellesley, MA, (2009), 139-168.

    [8]

    A. Douady, Descriptions of compact sets in $\bbc$, in, "Topological Methods in Modern Mathematics'' (Stony Brook, NY, 1991) (eds. L. R. Goldberg and A. V. Phillips), Publish or Perish, Houston, TX, (1993), 429-465.

    [9]

    A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," Part I Publications Mathématiques d'Orsay, 84-2, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984.

    [10]

    A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," Part II, Publications Mathématiques d'Orsay, 85-4, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985.

    [11]

    Y. Fisher, "The Classification of Critically Preperiodic Polynomials,'' Ph.D thesis, Cornell University, 1989.

    [12]

    L. Goldberg and J. Milnor, Fixed points of polynomial maps. II: Fixed point portraits, Ann. Scient. École Norm. Sup. (4), 26 (1993), 51-98.

    [13]

    J. Kiwi, Wandering orbit portraits, Trans. Amer. Math. Soc., 354 (2002), 1473-1485.doi: 10.1090/S0002-9947-01-02896-3.

    [14]

    J. Kiwi, $\mathbb R$eal laminations and the topological dynamics of complex polynomials, Advances in Math., 184 (2004), 207-267.doi: 10.1016/S0001-8708(03)00144-0.

    [15]

    J. Kiwi, Combinatorial continuity in complex polynomial dynamics, Proc. London Math. Soc. (3), 91 (2005), 215-248.

    [16]

    O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc. (3), 99 (2009), 275-296.doi: 10.1112/plms/pdn055.

    [17]

    G. Levin, On backward stability of holomorphic dynamical systems, Fundamenta Mathematicae, 158 (1998), 97-107.

    [18]

    J. Milnor, "Dynamics in One Complex Variable,'' 3rd edition, Annals of Mathematics Studies, 160, Princeton University Press, Princeton, 2006.

    [19]

    S. B. Nadler, Jr., "Continuum Theory. An Introduction,'' Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992.

    [20]

    R. Pérez-Marco, Fixed points and circle maps, Acta Math., 179 (1997), 243-294.

    [21]

    A. Poirier, Critical portraits for postcritically finite polynomials, Fund. Math., 203 (2009), 107-163.doi: 10.4064/fm203-2-2.

    [22]

    J. Rogers, Jr., Singularities in the boundaries of local Siegel disks, Erg. Th. and Dyn. Syst., 12 (1992), 803-821.

    [23]

    P. Roesch and Y. Yin, The boundary of bounded polynomial Fatou components, C. R. Math. Acad. Sci. Paris, 346 (2008), 877-880.

    [24]

    W. Thurston, The combinatorics of iterated rational maps, in, "Complex Dynamics'' (ed. D. Schleicher), A K Peters, Wellesley, MA, (2009), 1-108.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(97) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return