Citation: |
[1] |
B. Bielefeld, Y. Fisher and J. Hubbard, The classification of critically preperiodic polynomials as dynamical systems, Journal AMS, 5 (1992), 721-762. |
[2] |
A. Blokh, C. Curry and L. Oversteegen, Cubic critical portraits and polynomials with wandering gaps, preprint, arXiv:1003.4467, to appear in Erg. Th. and Dyn. Sys. |
[3] |
A. Blokh, C. Curry and L. Oversteegen, Locally connected models for Julia sets, Advances in Mathematics, 226 (2011), 1621-1661. |
[4] |
A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen and E. Tymchatyn, Fixed point theorems for plane continua with applications, preprint, arXiv:1004.0214, to appear in Memoirs of the American Mathematical Society. |
[5] |
A. Blokh and G. Levin, An inequality for laminations, Julia sets and "growing trees'', Erg. Th. and Dyn. Sys., 22 (2002), 63-97. |
[6] |
A. Blokh and L. Oversteegen, Monotone images of Cremer Julia sets, Houston J. Math., 36 (2010), 469-476. |
[7] |
A. Blokh and L. Oversteegen, Wandering gaps for weakly hyperbolic cubic polynomials, in, "Complex Dynamics'' (ed. D. Schleicher), A K Peters, Wellesley, MA, (2009), 139-168. |
[8] |
A. Douady, Descriptions of compact sets in $\bbc$, in, "Topological Methods in Modern Mathematics'' (Stony Brook, NY, 1991) (eds. L. R. Goldberg and A. V. Phillips), Publish or Perish, Houston, TX, (1993), 429-465. |
[9] |
A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," Part I Publications Mathématiques d'Orsay, 84-2, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984. |
[10] |
A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," Part II, Publications Mathématiques d'Orsay, 85-4, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985. |
[11] |
Y. Fisher, "The Classification of Critically Preperiodic Polynomials,'' Ph.D thesis, Cornell University, 1989. |
[12] |
L. Goldberg and J. Milnor, Fixed points of polynomial maps. II: Fixed point portraits, Ann. Scient. École Norm. Sup. (4), 26 (1993), 51-98. |
[13] |
J. Kiwi, Wandering orbit portraits, Trans. Amer. Math. Soc., 354 (2002), 1473-1485.doi: 10.1090/S0002-9947-01-02896-3. |
[14] |
J. Kiwi, $\mathbb R$eal laminations and the topological dynamics of complex polynomials, Advances in Math., 184 (2004), 207-267.doi: 10.1016/S0001-8708(03)00144-0. |
[15] |
J. Kiwi, Combinatorial continuity in complex polynomial dynamics, Proc. London Math. Soc. (3), 91 (2005), 215-248. |
[16] |
O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc. (3), 99 (2009), 275-296.doi: 10.1112/plms/pdn055. |
[17] |
G. Levin, On backward stability of holomorphic dynamical systems, Fundamenta Mathematicae, 158 (1998), 97-107. |
[18] |
J. Milnor, "Dynamics in One Complex Variable,'' 3rd edition, Annals of Mathematics Studies, 160, Princeton University Press, Princeton, 2006. |
[19] |
S. B. Nadler, Jr., "Continuum Theory. An Introduction,'' Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992. |
[20] |
R. Pérez-Marco, Fixed points and circle maps, Acta Math., 179 (1997), 243-294. |
[21] |
A. Poirier, Critical portraits for postcritically finite polynomials, Fund. Math., 203 (2009), 107-163.doi: 10.4064/fm203-2-2. |
[22] |
J. Rogers, Jr., Singularities in the boundaries of local Siegel disks, Erg. Th. and Dyn. Syst., 12 (1992), 803-821. |
[23] |
P. Roesch and Y. Yin, The boundary of bounded polynomial Fatou components, C. R. Math. Acad. Sci. Paris, 346 (2008), 877-880. |
[24] |
W. Thurston, The combinatorics of iterated rational maps, in, "Complex Dynamics'' (ed. D. Schleicher), A K Peters, Wellesley, MA, (2009), 1-108. |