Advanced Search
Article Contents
Article Contents

Density of orbits in laminations and the space of critical portraits

Abstract Related Papers Cited by
  • Thurston introduced $\sigma_d$-invariant laminations (where $\sigma_d(z)$ coincides with $z^d:\mathbb{S}\to \mathbb{S}$, $d\ge 2$). He defined wandering $k$-gons as sets $T\subset \mathbb{S}$ such that $\sigma_d^n(T)$ consists of $k\ge 3$ distinct points for all $n\ge 0$ and the convex hulls of all the sets $\sigma_d^n(T)$ in the plane are pairwise disjoint. Thurston proved that $\sigma_2$ has no wandering $k$-gons and posed the problem of their existence for $\sigma_d$, $d\ge 3$.
        Call a lamination with wandering $k$-gons a WT-lamination. Denote the set of cubic critical portraits by $\mathcal{A}_3$. A critical portrait, compatible with a WT-lamination, is called a WT-critical portrait; let $\mathcal{WT}_3$ be the set of all of them. It was recently shown by the authors that cubic WT-laminations exist and cubic WT-critical portraits, defining polynomials with condense orbits of vertices of order three in their dendritic Julia sets, are dense and locally uncountable in $\mathcal{A}_3$ ($D\subset X$ is condense in $X$ if $D$ intersects every subcontinuum of $X$). Here we show that $\mathcal{WT}_3$ is a dense first category subset of $\mathcal{A}_3$, that critical portraits, whose laminations have a condense orbit in the topological Julia set, form a residual subset of $\mathcal{A}_3$, and that the existence of a condense orbit in the Julia set $J$ implies that $J$ is locally connected.
    Mathematics Subject Classification: Primary: 37F20; Secondary: 37B45, 37F10, 37F50.


    \begin{equation} \\ \end{equation}
  • [1]

    B. Bielefeld, Y. Fisher and J. Hubbard, The classification of critically preperiodic polynomials as dynamical systems, Journal AMS, 5 (1992), 721-762.


    A. Blokh, C. Curry and L. OversteegenCubic critical portraits and polynomials with wandering gaps, preprint, arXiv:1003.4467, to appear in Erg. Th. and Dyn. Sys.


    A. Blokh, C. Curry and L. Oversteegen, Locally connected models for Julia sets, Advances in Mathematics, 226 (2011), 1621-1661.


    A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen and E. TymchatynFixed point theorems for plane continua with applications, preprint, arXiv:1004.0214, to appear in Memoirs of the American Mathematical Society.


    A. Blokh and G. Levin, An inequality for laminations, Julia sets and "growing trees'', Erg. Th. and Dyn. Sys., 22 (2002), 63-97.


    A. Blokh and L. Oversteegen, Monotone images of Cremer Julia sets, Houston J. Math., 36 (2010), 469-476.


    A. Blokh and L. Oversteegen, Wandering gaps for weakly hyperbolic cubic polynomials, in, "Complex Dynamics'' (ed. D. Schleicher), A K Peters, Wellesley, MA, (2009), 139-168.


    A. Douady, Descriptions of compact sets in $\bbc$, in, "Topological Methods in Modern Mathematics'' (Stony Brook, NY, 1991) (eds. L. R. Goldberg and A. V. Phillips), Publish or Perish, Houston, TX, (1993), 429-465.


    A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," Part I Publications Mathématiques d'Orsay, 84-2, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984.


    A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," Part II, Publications Mathématiques d'Orsay, 85-4, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985.


    Y. Fisher, "The Classification of Critically Preperiodic Polynomials,'' Ph.D thesis, Cornell University, 1989.


    L. Goldberg and J. Milnor, Fixed points of polynomial maps. II: Fixed point portraits, Ann. Scient. École Norm. Sup. (4), 26 (1993), 51-98.


    J. Kiwi, Wandering orbit portraits, Trans. Amer. Math. Soc., 354 (2002), 1473-1485.doi: 10.1090/S0002-9947-01-02896-3.


    J. Kiwi, $\mathbb R$eal laminations and the topological dynamics of complex polynomials, Advances in Math., 184 (2004), 207-267.doi: 10.1016/S0001-8708(03)00144-0.


    J. Kiwi, Combinatorial continuity in complex polynomial dynamics, Proc. London Math. Soc. (3), 91 (2005), 215-248.


    O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc. (3), 99 (2009), 275-296.doi: 10.1112/plms/pdn055.


    G. Levin, On backward stability of holomorphic dynamical systems, Fundamenta Mathematicae, 158 (1998), 97-107.


    J. Milnor, "Dynamics in One Complex Variable,'' 3rd edition, Annals of Mathematics Studies, 160, Princeton University Press, Princeton, 2006.


    S. B. Nadler, Jr., "Continuum Theory. An Introduction,'' Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992.


    R. Pérez-Marco, Fixed points and circle maps, Acta Math., 179 (1997), 243-294.


    A. Poirier, Critical portraits for postcritically finite polynomials, Fund. Math., 203 (2009), 107-163.doi: 10.4064/fm203-2-2.


    J. Rogers, Jr., Singularities in the boundaries of local Siegel disks, Erg. Th. and Dyn. Syst., 12 (1992), 803-821.


    P. Roesch and Y. Yin, The boundary of bounded polynomial Fatou components, C. R. Math. Acad. Sci. Paris, 346 (2008), 877-880.


    W. Thurston, The combinatorics of iterated rational maps, in, "Complex Dynamics'' (ed. D. Schleicher), A K Peters, Wellesley, MA, (2009), 1-108.

  • 加载中

Article Metrics

HTML views() PDF downloads(97) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint