\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Absolute and delay-dependent stability of equations with a distributed delay

Abstract Related Papers Cited by
  • We study delay-independent stability in nonlinear models with a distributed delay which have a positive equilibrium. Models with a unique positive equilibrium frequently occur in population dynamics and other applications. In particular, we construct a relevant difference equation such that its stability implies stability of the equation with a distributed delay and a finite memory. This result is, generally speaking, incorrect for systems with infinite memory. If the relevant difference equation is unstable, we describe the general delay-independent lower and upper solution bounds and also demonstrate that the equation with a distributed delay is stable for small enough delays.
    Mathematics Subject Classification: Primary: 34K20; Secondary: 92D25, 34K60, 34K23.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Berezansky and E. Braverman, Mackey-Glass equation with variable coefficients, Comput. Math. Appl., 51 (2006), 1-16.doi: 10.1016/j.camwa.2005.09.001.

    [2]

    L. Berezansky and E. Braverman, On existence and attractivity of periodic solutions for the hematopoiesis equation, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 13B (2006), suppl., 103-116.

    [3]

    L. Berezansky and E. Braverman, Linearized oscillation theory for a nonlinear equation with a distributed delay, Math. Comput. Modelling, 48 (2008), 287-304.doi: 10.1016/j.mcm.2007.10.003.

    [4]

    L. Berezansky, E. Braverman and L. Idels, Nicholson's blowflies differential equations revisited: Main results and open problems, Appl. Math. Model., 34 (2010), 1405-1417.doi: 10.1016/j.apm.2009.08.027.

    [5]

    N. Bradul and L. Shaikhet, Stability of the positive point of equilibrium of Nicholson's blowflies equation with stochastic perturbations: Numerical analysis, Discrete Dyn. Nat. Soc., 2007, Art. ID 92959, 25 pp.

    [6]

    E. Braverman and D. Kinzebulatov, Nicholson's blowflies equation with a distributed delay, Can. Appl. Math. Quart., 14 (2006), 107-128.

    [7]

    W. A. Coppel, The solution of equations by iteration, Proc. Cambridge Philos. Soc., 51 (1955), 41-43.doi: 10.1017/S030500410002990X.

    [8]

    C. Corduneanu, "Functional Equations with Causal Operators," Stability and Control: Theory, Methods and Applications, 16, Taylor & Francis, London, 2002.

    [9]

    K. Gopalsamy, N. Bantsur and S. Trofimchuk, A note on global attractivity in models of hematopoiesis, Ukrainian Math. J., 50 (1998), 3-12.doi: 10.1007/BF02514684.

    [10]

    W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited, Nature, 287 (1980), 17-21.doi: 10.1038/287017a0.

    [11]

    I. Győri and G. Ladas, "Oscillation Theory of Delay Differential Equations. With Applications," Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991.

    [12]

    I. Győri and S. Trofimchuk, Global attractivity in $x^{\'}(t)= -\delta x(t) +p f(x(t-h))$, Dynam. Syst. Appl., 8 (1999), 197-210.

    [13]

    K. P. Hadeler and J. Tomiuk, Periodic solutions of difference-differential equations, Arch. Rat. Mech. Anal., 65 (1977), 87-95.doi: 10.1007/BF00289359.

    [14]

    A. F. Ivanov, On global stability in a nonlinear discrete model, Nonlinear Anal., 23 (1994), 1383-1389.doi: 10.1016/0362-546X(94)90133-3.

    [15]

    A. F. Ivanov and A. N. Sharkovsky, Oscillations in singularly perturbed delay equations, in "Dynamics Reported: Expositions in Dynamical Systems," Dynam. Rep. Expositions Dynam. Systems (New Series), 1, Springer, Berlin, (1992), 164-224.

    [16]

    G. Karakostas, Ch. Philos and Y. Sficas, Stable steady state of some population models, J. Dynam. Diff. Eq., 4 (1992), 161-190.

    [17]

    T. Krisztin and H.-O. Walther, Unique periodic orbits for delayed positive feedback and the global attractor, J. Dynam. Differential Equations, 13 (2001), 1-57.doi: 10.1023/A:1009091930589.

    [18]

    T. Krisztin, H.-O. Walther and J. Wu, "Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback," Fields Inst. Monogr., 11, AMS, Providence, RI, 1999.

    [19]

    Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Mathematics in Science and Engineering, 191, Academic Press, Inc., Boston, MA, 1993.

    [20]

    I. Kubiaczyk and S. H. Saker, Oscillation and stability in nonlinear delay differential equations of population dynamics, Math. Comput. Modelling, 35 (2002), 295-301.

    [21]

    M. R. S. Kulenović, G. Ladas and Y. Sficas, Global attractivity in Nicholson's blowflies, Appl. Anal., 43 (1992), 109-124.

    [22]

    B. Lani-Wayda, Erratic solutions of simple delay equations, Trans. Am. Math. Soc., 351 (1999), 901-945.doi: 10.1090/S0002-9947-99-02351-X.

    [23]

    E. Liz, Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.doi: 10.3934/dcdsb.2007.7.191.

    [24]

    E. Liz, C. Martínez and S. Trofimchuk, Attractivity properties of infinite delay Mackey-Glass type equations, Differential Integral Equations, 15 (2002), 875-896.

    [25]

    E. Liz, M. Pinto, V. Tkachenko and S. Tromichuk, A global stability criterion for a family of delayed population models, Quart. Appl. Math, 63 (2005), 56-70.

    [26]

    E. Liz and G. Röst, On the global attractor of delay differential equations with unimodal feedback, Discrete and Continuous Dynamical Systems, 24 (2009), 1215-1224.doi: 10.3934/dcds.2009.24.1215.

    [27]

    E. Liz, V. Tkachenko and S. Trofimchuk, A global stability criterion for scalar functional differential equations, SIAM J. Math. Anal., 35 (2003), 596-622.doi: 10.1137/S0036141001399222.

    [28]

    E. Liz, E. Trofimchuk and S. Trofimchuk, Mackey-Glass type delay differential equations near the boundary of absolute stability, J. Math. Anal. Appl., 275 (2002), 747-760.doi: 10.1016/S0022-247X(02)00416-X.

    [29]

    J. Losson, M. C. Mackey and A. Longtin, Solution multistability in first-order nonlinear differential delay equations, Chaos, 3 (1993), 167-176.doi: 10.1063/1.165982.

    [30]

    M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287-289.doi: 10.1126/science.267326.

    [31]

    J. Mallet-Paret and R. Nussbaum, Global continuation and asymptotic behavior for periodic solutions of a differential-delay equation, Ann. Mat. Pura Appl. (4), 145 (1986), 33-128.doi: 10.1007/BF01790539.

    [32]

    J. Mallet-Paret and R. Nussbaum, A differential-delay equation arising in optics and physiology, SIAM J. Math. Anal., 20 (1989), 249-292.doi: 10.1137/0520019.

    [33]

    J. Mallet-Paret and G. R. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay, J. Differential Equations, 125 (1996), 441-489.doi: 10.1006/jdeq.1996.0037.

    [34]

    A. J. Nicholson, An outline of the dynamics of animal populations, Austral. J. Zool., 2 (1954), 9-65.doi: 10.1071/ZO9540009.

    [35]

    G. Röst and J. Wu, Domain decomposition method for the global dynamics of delay differential equations with unimodal feedback, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 2655-2669.

    [36]

    S. H. Saker, Oscillation and global attractivity in hematopoiesis model with delay time, Appl. Math. Comput., 136 (2003), 241-250.doi: 10.1016/S0096-3003(02)00035-8.

    [37]

    D. Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.doi: 10.1137/0135020.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return