\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Energy cascades for NLS on the torus

Abstract Related Papers Cited by
  • We consider the nonlinear Schrödinger equation with cubic (focusing or defocusing) nonlinearity on the multidimensional torus. For special small initial data containing only five modes, we exhibit a countable set of time layers in which arbitrarily large modes are created. The proof relies on a reduction to multiphase weakly nonlinear geometric optics, and on the study of a particular two-dimensional discrete dynamical system.
    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35C20, 37K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Bambusi, Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys., 234 (2003), 253-285.doi: 10.1007/s00220-002-0774-4.

    [2]

    D. Bambusi and B. Grébert, Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J., 135 (2006), 507-567.doi: 10.1215/S0012-7094-06-13534-2.

    [3]

    J. Bourgain, Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., 6 (1996), 201-230.doi: 10.1007/BF02247885.

    [4]

    _____, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math. (2), 148 (1998), 363-439.

    [5]

    R. Carles, Cascade of phase shifts for nonlinear Schrödinger equations, J. Hyperbolic Differ. Equ., 4 (2007), 207-231.doi: 10.1142/S0219891607001112.

    [6]

    _____, "Semi-Classical Analysis for Nonlinear Schrödinger Equations," World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.

    [7]

    R. Carles, E. Dumas and C. Sparber, Multiphase weakly nonlinear geometric optics for Schrödinger equations, SIAM J. Math. Anal., 42 (2010), 489-518.doi: 10.1137/090750871.

    [8]

    C. Cheverry, Cascade of phases in turbulent flows, Bull. Soc. Math. France, 134 (2006), 33-82.

    [9]

    J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181 (2010), 39-113.doi: 10.1007/s00222-010-0242-2.

    [10]

    W. Craig and C. E. Wayne, Periodic solutions of nonlinear Schrödinger equations and the Nash-Moser method, in "Hamiltonian Mechanics" (Toruń, 1993), NATO Adv. Sci. Inst. Ser. B Phys., 331, Plenum, New York, (1994), 103-122.

    [11]

    L. H. Eliasson and S. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. Math. (2), 172 (2010), 371-435.doi: 10.4007/annals.2010.172.371.

    [12]

    E. Faou, Geometric integration of Hamiltonian PDEs and applications to computational quantum mechanics, European Math. Soc., 2011, to appear.

    [13]

    E. Faou and B. Grébert, A Nekhoroshev type theorem for the nonlinear Schrödinger equation on the torus, preprint, arXiv:1003.4845, 2010.

    [14]

    _____, Hamiltonian interpolation of splitting approximations for nonlinear PDEs, Found. Comput. Math. 11 (2011), no. 4, 381-415.

    [15]

    L. Gauckler and C. Lubich, Nonlinear Schrödinger equations and their spectral semi-discretizations over long times, Found. Comput. Math., 10 (2010), 141-169.doi: 10.1007/s10208-010-9059-z.

    [16]

    B. Grébert, Birkhoff normal form and Hamiltonian PDEs, in "Partial Differential Equations and Applications," Sémin. Congr., 15, Soc. Math. France, Paris, 2007, 1-46.

    [17]

    S. Kuksin, Oscillations in space-periodic nonlinear Schrödinger equations, Geom. Funct. Anal., 7 (1997), 338-363.doi: 10.1007/PL00001622.

    [18]

    S. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math. (2), 143 (1996), 149-179.doi: 10.2307/2118656.

    [19]

    C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp., 77 (2008), 2141-2153.doi: 10.1090/S0025-5718-08-02101-7.

    [20]

    L. van Veen, The quasi-periodic doubling cascade in the transition to weak turbulence, Phys. D, 210 (2005), 249-261.doi: 10.1016/j.physd.2005.07.020.

    [21]

    W.-M. Wang, Quasi-periodic solutions of the Schrödinger equation with arbitrary algebraic nonlinearities, preprint, arXiv:0907.3409, 2009.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(173) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return