-
Previous Article
On the fluid dynamical approximation to the nonlinear Klein-Gordon equation
- DCDS Home
- This Issue
-
Next Article
On dynamical behavior of viscous Cahn-Hilliard equation
Self-maps on flat manifolds with infinitely many periods
1. | Department of Mathematics, Capital Normal University, Beijing 100048, Beijing International Center for Mathematical Research, China |
2. | Department of Mathematics & Institute of mathematics and interdisciplinary science, Capital Normal University, Beijing 100048, China |
References:
[1] |
L. Alsedà, S. Baldwin, J. Llibre, R. Swanson and W. Szlenk, Minimal sets of periods for torus maps via Nielsen numbers, Pacific J. Math., 169 (1995), 1-32. |
[2] |
L. Block, J. Guckenheimer, M. Misiurewicz and L. Young, Periodic points and topological entropy of one-dimensional maps, in "Global Theory of Dynamical Systems" (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), Lecture Notes in Math., 819, Springer, Berlin, (1980), 18-34. |
[3] |
L. Charlap, "Bieberbach Groups and Flat Manifolds," Universitext, Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4613-8687-2. |
[4] |
J. Jezierski, Wecken's theorem for periodic points in dimension at least $3$, Topology and its Applications, 153 (2006), 1825-1837.
doi: 10.1016/j.topol.2005.06.008. |
[5] |
J. Jezierski, E. Keppelmann and W. Marzantowicz, Wecken property for periodic points on the Klein bottle, Topol. Methods Nonlinear Anal., 33 (2009), 51-64. |
[6] |
B. Jiang, "Lectures on Nielsen Fixed Point Theory," Contemporary Mathematics, 14, American Mathematical Society, Providence, R.I., 1983. |
[7] |
B. Jiang and J. Llibre, Minimal sets of periods for torus maps, Discrete Contin. Dynam. Systems, 4 (1998), 301-320.
doi: 10.3934/dcds.1998.4.301. |
[8] |
J. Jezierski and W. Marzantowicz, "Homotopy Methods in Topological Fixed and Periodic Points Theory," Topological Fixed Point Theory and Its Applications, 3, Springer, Dordrecht, 2006. |
[9] |
J. Y. Kim, S. S. Kim and X. Zhao, Minimal sets of periods for maps on the Klein bottle, J. Korean Math. Soc., 45 (2008), 883-902.
doi: 10.4134/JKMS.2008.45.3.883. |
[10] |
S. W. Kim, J. B. Lee and K. B. Lee, Averaging formula for Nielsen numbers, Nagoya Math. J., 178 (2005), 37-53. |
[11] |
K. B. Lee, Maps on infra-nilmanifolds, Pacific J. Math., 168 (1995), 157-166. |
[12] |
J. B. Lee and K. B. Lee, Lefschetz numbers for continuous maps, and periods for expanding maps on infra-nilmanifolds, J. Geom. Phys., 56 (2006), 2011-2023.
doi: 10.1016/j.geomphys.2005.11.003. |
[13] |
J. B. Lee and X. Zhao, Homotopy minimal periods for expanding maps on infra-nilmanifolds, J. Math. Soc. Japan, 59 (2007), 179-184.
doi: 10.2969/jmsj/1180135506. |
[14] |
J. Llibre, A note on the set of periods for Klein bottle maps, Pacific J. Math., 157 (1993), 87-93. |
[15] |
R. Tauraso, Sets of periods for expanding maps on flat manifolds, Monatshefte für Mathematik, 128 (1999), 151-157.
doi: 10.1007/s006050050052. |
show all references
References:
[1] |
L. Alsedà, S. Baldwin, J. Llibre, R. Swanson and W. Szlenk, Minimal sets of periods for torus maps via Nielsen numbers, Pacific J. Math., 169 (1995), 1-32. |
[2] |
L. Block, J. Guckenheimer, M. Misiurewicz and L. Young, Periodic points and topological entropy of one-dimensional maps, in "Global Theory of Dynamical Systems" (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), Lecture Notes in Math., 819, Springer, Berlin, (1980), 18-34. |
[3] |
L. Charlap, "Bieberbach Groups and Flat Manifolds," Universitext, Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4613-8687-2. |
[4] |
J. Jezierski, Wecken's theorem for periodic points in dimension at least $3$, Topology and its Applications, 153 (2006), 1825-1837.
doi: 10.1016/j.topol.2005.06.008. |
[5] |
J. Jezierski, E. Keppelmann and W. Marzantowicz, Wecken property for periodic points on the Klein bottle, Topol. Methods Nonlinear Anal., 33 (2009), 51-64. |
[6] |
B. Jiang, "Lectures on Nielsen Fixed Point Theory," Contemporary Mathematics, 14, American Mathematical Society, Providence, R.I., 1983. |
[7] |
B. Jiang and J. Llibre, Minimal sets of periods for torus maps, Discrete Contin. Dynam. Systems, 4 (1998), 301-320.
doi: 10.3934/dcds.1998.4.301. |
[8] |
J. Jezierski and W. Marzantowicz, "Homotopy Methods in Topological Fixed and Periodic Points Theory," Topological Fixed Point Theory and Its Applications, 3, Springer, Dordrecht, 2006. |
[9] |
J. Y. Kim, S. S. Kim and X. Zhao, Minimal sets of periods for maps on the Klein bottle, J. Korean Math. Soc., 45 (2008), 883-902.
doi: 10.4134/JKMS.2008.45.3.883. |
[10] |
S. W. Kim, J. B. Lee and K. B. Lee, Averaging formula for Nielsen numbers, Nagoya Math. J., 178 (2005), 37-53. |
[11] |
K. B. Lee, Maps on infra-nilmanifolds, Pacific J. Math., 168 (1995), 157-166. |
[12] |
J. B. Lee and K. B. Lee, Lefschetz numbers for continuous maps, and periods for expanding maps on infra-nilmanifolds, J. Geom. Phys., 56 (2006), 2011-2023.
doi: 10.1016/j.geomphys.2005.11.003. |
[13] |
J. B. Lee and X. Zhao, Homotopy minimal periods for expanding maps on infra-nilmanifolds, J. Math. Soc. Japan, 59 (2007), 179-184.
doi: 10.2969/jmsj/1180135506. |
[14] |
J. Llibre, A note on the set of periods for Klein bottle maps, Pacific J. Math., 157 (1993), 87-93. |
[15] |
R. Tauraso, Sets of periods for expanding maps on flat manifolds, Monatshefte für Mathematik, 128 (1999), 151-157.
doi: 10.1007/s006050050052. |
[1] |
James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667 |
[2] |
Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Period doubling and reducibility in the quasi-periodically forced logistic map. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1507-1535. doi: 10.3934/dcdsb.2012.17.1507 |
[3] |
Partha Sharathi Dutta, Soumitro Banerjee. Period increment cascades in a discontinuous map with square-root singularity. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 961-976. doi: 10.3934/dcdsb.2010.14.961 |
[4] |
Zhiping Fan, Duanzhi Zhang. Minimal period solutions in asymptotically linear Hamiltonian system with symmetries. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2095-2124. doi: 10.3934/dcds.2020354 |
[5] |
Chungen Liu. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 337-355. doi: 10.3934/dcds.2010.27.337 |
[6] |
Yavdat Il'yasov, Nadir Sari. Solutions of minimal period for a Hamiltonian system with a changing sign potential. Communications on Pure and Applied Analysis, 2005, 4 (1) : 175-185. doi: 10.3934/cpaa.2005.4.175 |
[7] |
Juhong Kuang, Weiyi Chen, Zhiming Guo. Periodic solutions with prescribed minimal period for second order even Hamiltonian systems. Communications on Pure and Applied Analysis, 2022, 21 (1) : 47-59. doi: 10.3934/cpaa.2021166 |
[8] |
Denis Gaidashev, Tomas Johnson. Dynamics of the universal area-preserving map associated with period-doubling: Stable sets. Journal of Modern Dynamics, 2009, 3 (4) : 555-587. doi: 10.3934/jmd.2009.3.555 |
[9] |
Duanzhi Zhang. Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2227-2272. doi: 10.3934/dcds.2015.35.2227 |
[10] |
Peter Seibt. A period formula for torus automorphisms. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1029-1048. doi: 10.3934/dcds.2003.9.1029 |
[11] |
Kaijen Cheng, Kenneth Palmer, Yuh-Jenn Wu. Period 3 and chaos for unimodal maps. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1933-1949. doi: 10.3934/dcds.2014.34.1933 |
[12] |
Ely Kerman. On primes and period growth for Hamiltonian diffeomorphisms. Journal of Modern Dynamics, 2012, 6 (1) : 41-58. doi: 10.3934/jmd.2012.6.41 |
[13] |
Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795 |
[14] |
Reza Lotfi, Gerhard-Wilhelm Weber, S. Mehdi Sajadifar, Nooshin Mardani. Interdependent demand in the two-period newsvendor problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 117-140. doi: 10.3934/jimo.2018143 |
[15] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[16] |
Guibin Lu, Qiying Hu, Youying Zhou, Wuyi Yue. Optimal execution strategy with an endogenously determined sales period. Journal of Industrial and Management Optimization, 2005, 1 (3) : 289-304. doi: 10.3934/jimo.2005.1.289 |
[17] |
Linping Peng, Yazhi Lei. The cyclicity of the period annulus of a quadratic reversible system with a hemicycle. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 873-890. doi: 10.3934/dcds.2011.30.873 |
[18] |
Yi Shao, Yulin Zhao. The cyclicity of the period annulus of a class of quadratic reversible system. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1269-1283. doi: 10.3934/cpaa.2012.11.1269 |
[19] |
Marcelo Marchesin. The mass dependence of the period of the periodic solutions of the Sitnikov problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 597-609. doi: 10.3934/dcdss.2008.1.597 |
[20] |
Adriana Buică, Jaume Giné, Maite Grau. Essential perturbations of polynomial vector fields with a period annulus. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1073-1095. doi: 10.3934/cpaa.2015.14.1073 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]