Citation: |
[1] |
Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Commun. in Partial Differential Equations, 25 (2000), 737-754.doi: 10.1080/03605300008821529. |
[2] |
R. Carles, Geometric optics and instability for semi-classical Schrödinger equations, Arch. Rational Mech. Anal., 183 (2007), 525-553.doi: 10.1007/s00205-006-0017-5. |
[3] |
Q. Chang, Y.-S. Wong and C.-K. Lin, Numerical computation for long-wave short-wave interaction equations in semi-classical limit, Journal of Computational Physics, 227 (2008), 8489-8507.doi: 10.1016/j.jcp.2008.05.015. |
[4] |
T. Colin and A. Soyeur, Some singular limits for evolutionary Ginzburg-Landau equations, Asymptotic Analysis, 13 (1996), 361-372. |
[5] |
B. Desjardins, C.-K. Lin and T.-C. Tso, Semiclassical limit of the derivative nonlinear Schrödinger equation, Math. Models Methods Appl. Sci., 10 (2000), 261-285. |
[6] |
B. Desjardins and C.-K. Lin, On the semiclassical limit of the general modified NLS equation, J. Math. Anal. Appl., 260 (2001), 546-571. |
[7] |
N. Ercolani and R. Montgometry, On the fluid approximation to a nonlinear Schrödinger equation, Physics Letters A, 180 (1993), 402-408.doi: 10.1016/0375-9601(93)90290-G. |
[8] |
I. Gasser, C.-K. Lin and P. Markowich, A review of dispersive limit of the (non)linear Schrödinger-type equation, Taiwanese J. of Mathematics., 4 (2000), 501-529. |
[9] |
V. L. Ginzburg and L. P. Pitaevskiĭ, On the theory of superfluidity, Sov. Phys. JETP, 34(7) (1958), 858-861. |
[10] |
E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc., 126 (1998), 523-530.doi: 10.1090/S0002-9939-98-04164-1. |
[11] |
S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure Appl. Math., 52 (1999), 613-654.doi: 10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.0.CO;2-L. |
[12] |
J.-H. Lee and C.-K. Lin, The behavior of solutions of NLS equation of derivative type in the semiclassical limit, Chaos, Solitons & Fractals, 13 (2002), 1475-1492.doi: 10.1016/S0960-0779(01)00157-6. |
[13] |
J.-H. Lee, C.-K. Lin and O. K. Pashaev, Shock waves, chiral solitons and semiclassical limit of one-dimensional anyons, Chaos, Solitons & Fractals, 19 (2004), 109-128.doi: 10.1016/S0960-0779(03)00084-5. |
[14] |
H.-L. Li and C.-K. Lin, Semiclassical limit and well-posedness of nonlinear Schrödinger-Poisson systems, Electronic Journal of Differential Equations, 2003, 17 pp. |
[15] |
H.-L. Li and C.-K. Lin, Zero Debye length asymptotic of the quantum hydrodynamic model of semiconductors, Commun. Math. Phys., 256 (2005), 195-212.doi: 10.1007/s00220-005-1316-7. |
[16] |
C.-K. Lin and Y.-S. Wong, Zero-dispersion limit of the short-wave-long-wave interaction equations, Journal of Differential Equations, 228 (2006), 87-110.doi: 10.1016/j.jde.2006.03.027. |
[17] |
C.-K. Lin and K.-C. Wu, Singular limits of the Klein-Gordon equation, Arch. Rational Mech. Anal., 197 (2010), 689-711.doi: 10.1007/s00205-010-0324-8. |
[18] |
F.-H. Lin and J. X. Xin, On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation, Commun. in Math. Phys., 200 (1999), 249-274.doi: 10.1007/s002200050529. |
[19] |
T.-C. Lin and P. Zhang, Incompressible and compressible limit of coupled systems of nonlinear Schrödinger equations, Commun. Math. Phys., 266 (2006), 547-569. |
[20] |
S. Machihara, K. Nakanishi and T. Ozawa, Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, Mathematische Annalen, 322 (2002), 603-621.doi: 10.1007/s002080200008. |
[21] |
A. Messiah, "Quantum Mechanics," Vol. 1 & 2, Dover Publications, Inc., 1999. |
[22] |
H. M. Pilkuhn, "Relativistic Quantum Mechanics," Texts and Monographs in Physics, Springer-Verlag, Berlin, 2003. |
[23] |
M. Puel, Convergence of the Schrödinger-Poisson system to the incompressible Euler equations, Commun. in Partial Differential Equations, 27 (2002), 2311-2331.doi: 10.1081/PDE-120016159. |
[24] |
J. Shatah and M. Struwe, "Geometric Wave Equations," Courant Lecture Notes in Mathematics, Vol. 2, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 1998. |
[25] |
C. Sulem and P.-L. Sulem, "The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse," Appl. Math. Sci., 139, Springer-Verlag, New York, 1999. |
[26] |
W. Strauss, "Nonlinear Wave Equations," CBMS Regional Conference Series in Mathematics, 73, Published for the Conference Board of the Mathematical Sciences, Washington, DC, American Math. Soc., Providence, RI, 1989. |
[27] |
K.-C. Wu, Convergence of the Klein-Gordon equation to the wave map equation with magnetic field, J. Math. Anal. Appl., 365 (2010), 584-589.doi: 10.1016/j.jmaa.2009.11.022. |