\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the fluid dynamical approximation to the nonlinear Klein-Gordon equation

Abstract Related Papers Cited by
  • We study the nonrelativistic, semiclassical and nonrelativistic-semiclassical limits of the (modulated) nonlinear Klein-Gordon equations from its hydrodynamical structure via WKB analysis. The nonrelativistic-semiclassical limit is proved rigorously by modulated energy method.
    Mathematics Subject Classification: 35L05, 35Q60; 76Y05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Commun. in Partial Differential Equations, 25 (2000), 737-754.doi: 10.1080/03605300008821529.

    [2]

    R. Carles, Geometric optics and instability for semi-classical Schrödinger equations, Arch. Rational Mech. Anal., 183 (2007), 525-553.doi: 10.1007/s00205-006-0017-5.

    [3]

    Q. Chang, Y.-S. Wong and C.-K. Lin, Numerical computation for long-wave short-wave interaction equations in semi-classical limit, Journal of Computational Physics, 227 (2008), 8489-8507.doi: 10.1016/j.jcp.2008.05.015.

    [4]

    T. Colin and A. Soyeur, Some singular limits for evolutionary Ginzburg-Landau equations, Asymptotic Analysis, 13 (1996), 361-372.

    [5]

    B. Desjardins, C.-K. Lin and T.-C. Tso, Semiclassical limit of the derivative nonlinear Schrödinger equation, Math. Models Methods Appl. Sci., 10 (2000), 261-285.

    [6]

    B. Desjardins and C.-K. Lin, On the semiclassical limit of the general modified NLS equation, J. Math. Anal. Appl., 260 (2001), 546-571.

    [7]

    N. Ercolani and R. Montgometry, On the fluid approximation to a nonlinear Schrödinger equation, Physics Letters A, 180 (1993), 402-408.doi: 10.1016/0375-9601(93)90290-G.

    [8]

    I. Gasser, C.-K. Lin and P. Markowich, A review of dispersive limit of the (non)linear Schrödinger-type equation, Taiwanese J. of Mathematics., 4 (2000), 501-529.

    [9]

    V. L. Ginzburg and L. P. Pitaevskiĭ, On the theory of superfluidity, Sov. Phys. JETP, 34(7) (1958), 858-861.

    [10]

    E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc., 126 (1998), 523-530.doi: 10.1090/S0002-9939-98-04164-1.

    [11]

    S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure Appl. Math., 52 (1999), 613-654.doi: 10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.0.CO;2-L.

    [12]

    J.-H. Lee and C.-K. Lin, The behavior of solutions of NLS equation of derivative type in the semiclassical limit, Chaos, Solitons & Fractals, 13 (2002), 1475-1492.doi: 10.1016/S0960-0779(01)00157-6.

    [13]

    J.-H. Lee, C.-K. Lin and O. K. Pashaev, Shock waves, chiral solitons and semiclassical limit of one-dimensional anyons, Chaos, Solitons & Fractals, 19 (2004), 109-128.doi: 10.1016/S0960-0779(03)00084-5.

    [14]

    H.-L. Li and C.-K. LinSemiclassical limit and well-posedness of nonlinear Schrödinger-Poisson systems, Electronic Journal of Differential Equations, 2003, 17 pp.

    [15]

    H.-L. Li and C.-K. Lin, Zero Debye length asymptotic of the quantum hydrodynamic model of semiconductors, Commun. Math. Phys., 256 (2005), 195-212.doi: 10.1007/s00220-005-1316-7.

    [16]

    C.-K. Lin and Y.-S. Wong, Zero-dispersion limit of the short-wave-long-wave interaction equations, Journal of Differential Equations, 228 (2006), 87-110.doi: 10.1016/j.jde.2006.03.027.

    [17]

    C.-K. Lin and K.-C. Wu, Singular limits of the Klein-Gordon equation, Arch. Rational Mech. Anal., 197 (2010), 689-711.doi: 10.1007/s00205-010-0324-8.

    [18]

    F.-H. Lin and J. X. Xin, On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation, Commun. in Math. Phys., 200 (1999), 249-274.doi: 10.1007/s002200050529.

    [19]

    T.-C. Lin and P. Zhang, Incompressible and compressible limit of coupled systems of nonlinear Schrödinger equations, Commun. Math. Phys., 266 (2006), 547-569.

    [20]

    S. Machihara, K. Nakanishi and T. Ozawa, Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, Mathematische Annalen, 322 (2002), 603-621.doi: 10.1007/s002080200008.

    [21]

    A. Messiah, "Quantum Mechanics," Vol. 1 & 2, Dover Publications, Inc., 1999.

    [22]

    H. M. Pilkuhn, "Relativistic Quantum Mechanics," Texts and Monographs in Physics, Springer-Verlag, Berlin, 2003.

    [23]

    M. Puel, Convergence of the Schrödinger-Poisson system to the incompressible Euler equations, Commun. in Partial Differential Equations, 27 (2002), 2311-2331.doi: 10.1081/PDE-120016159.

    [24]

    J. Shatah and M. Struwe, "Geometric Wave Equations," Courant Lecture Notes in Mathematics, Vol. 2, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 1998.

    [25]

    C. Sulem and P.-L. Sulem, "The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse," Appl. Math. Sci., 139, Springer-Verlag, New York, 1999.

    [26]

    W. Strauss, "Nonlinear Wave Equations," CBMS Regional Conference Series in Mathematics, 73, Published for the Conference Board of the Mathematical Sciences, Washington, DC, American Math. Soc., Providence, RI, 1989.

    [27]

    K.-C. Wu, Convergence of the Klein-Gordon equation to the wave map equation with magnetic field, J. Math. Anal. Appl., 365 (2010), 584-589.doi: 10.1016/j.jmaa.2009.11.022.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return