Advanced Search
Article Contents
Article Contents

On the fluid dynamical approximation to the nonlinear Klein-Gordon equation

Abstract Related Papers Cited by
  • We study the nonrelativistic, semiclassical and nonrelativistic-semiclassical limits of the (modulated) nonlinear Klein-Gordon equations from its hydrodynamical structure via WKB analysis. The nonrelativistic-semiclassical limit is proved rigorously by modulated energy method.
    Mathematics Subject Classification: 35L05, 35Q60; 76Y05.


    \begin{equation} \\ \end{equation}
  • [1]

    Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Commun. in Partial Differential Equations, 25 (2000), 737-754.doi: 10.1080/03605300008821529.


    R. Carles, Geometric optics and instability for semi-classical Schrödinger equations, Arch. Rational Mech. Anal., 183 (2007), 525-553.doi: 10.1007/s00205-006-0017-5.


    Q. Chang, Y.-S. Wong and C.-K. Lin, Numerical computation for long-wave short-wave interaction equations in semi-classical limit, Journal of Computational Physics, 227 (2008), 8489-8507.doi: 10.1016/j.jcp.2008.05.015.


    T. Colin and A. Soyeur, Some singular limits for evolutionary Ginzburg-Landau equations, Asymptotic Analysis, 13 (1996), 361-372.


    B. Desjardins, C.-K. Lin and T.-C. Tso, Semiclassical limit of the derivative nonlinear Schrödinger equation, Math. Models Methods Appl. Sci., 10 (2000), 261-285.


    B. Desjardins and C.-K. Lin, On the semiclassical limit of the general modified NLS equation, J. Math. Anal. Appl., 260 (2001), 546-571.


    N. Ercolani and R. Montgometry, On the fluid approximation to a nonlinear Schrödinger equation, Physics Letters A, 180 (1993), 402-408.doi: 10.1016/0375-9601(93)90290-G.


    I. Gasser, C.-K. Lin and P. Markowich, A review of dispersive limit of the (non)linear Schrödinger-type equation, Taiwanese J. of Mathematics., 4 (2000), 501-529.


    V. L. Ginzburg and L. P. Pitaevskiĭ, On the theory of superfluidity, Sov. Phys. JETP, 34(7) (1958), 858-861.


    E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc., 126 (1998), 523-530.doi: 10.1090/S0002-9939-98-04164-1.


    S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure Appl. Math., 52 (1999), 613-654.doi: 10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.0.CO;2-L.


    J.-H. Lee and C.-K. Lin, The behavior of solutions of NLS equation of derivative type in the semiclassical limit, Chaos, Solitons & Fractals, 13 (2002), 1475-1492.doi: 10.1016/S0960-0779(01)00157-6.


    J.-H. Lee, C.-K. Lin and O. K. Pashaev, Shock waves, chiral solitons and semiclassical limit of one-dimensional anyons, Chaos, Solitons & Fractals, 19 (2004), 109-128.doi: 10.1016/S0960-0779(03)00084-5.


    H.-L. Li and C.-K. LinSemiclassical limit and well-posedness of nonlinear Schrödinger-Poisson systems, Electronic Journal of Differential Equations, 2003, 17 pp.


    H.-L. Li and C.-K. Lin, Zero Debye length asymptotic of the quantum hydrodynamic model of semiconductors, Commun. Math. Phys., 256 (2005), 195-212.doi: 10.1007/s00220-005-1316-7.


    C.-K. Lin and Y.-S. Wong, Zero-dispersion limit of the short-wave-long-wave interaction equations, Journal of Differential Equations, 228 (2006), 87-110.doi: 10.1016/j.jde.2006.03.027.


    C.-K. Lin and K.-C. Wu, Singular limits of the Klein-Gordon equation, Arch. Rational Mech. Anal., 197 (2010), 689-711.doi: 10.1007/s00205-010-0324-8.


    F.-H. Lin and J. X. Xin, On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation, Commun. in Math. Phys., 200 (1999), 249-274.doi: 10.1007/s002200050529.


    T.-C. Lin and P. Zhang, Incompressible and compressible limit of coupled systems of nonlinear Schrödinger equations, Commun. Math. Phys., 266 (2006), 547-569.


    S. Machihara, K. Nakanishi and T. Ozawa, Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, Mathematische Annalen, 322 (2002), 603-621.doi: 10.1007/s002080200008.


    A. Messiah, "Quantum Mechanics," Vol. 1 & 2, Dover Publications, Inc., 1999.


    H. M. Pilkuhn, "Relativistic Quantum Mechanics," Texts and Monographs in Physics, Springer-Verlag, Berlin, 2003.


    M. Puel, Convergence of the Schrödinger-Poisson system to the incompressible Euler equations, Commun. in Partial Differential Equations, 27 (2002), 2311-2331.doi: 10.1081/PDE-120016159.


    J. Shatah and M. Struwe, "Geometric Wave Equations," Courant Lecture Notes in Mathematics, Vol. 2, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 1998.


    C. Sulem and P.-L. Sulem, "The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse," Appl. Math. Sci., 139, Springer-Verlag, New York, 1999.


    W. Strauss, "Nonlinear Wave Equations," CBMS Regional Conference Series in Mathematics, 73, Published for the Conference Board of the Mathematical Sciences, Washington, DC, American Math. Soc., Providence, RI, 1989.


    K.-C. Wu, Convergence of the Klein-Gordon equation to the wave map equation with magnetic field, J. Math. Anal. Appl., 365 (2010), 584-589.doi: 10.1016/j.jmaa.2009.11.022.

  • 加载中

Article Metrics

HTML views() PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint