\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonradial solutions for the Klein-Gordon-Maxwell equations

Abstract Related Papers Cited by
  • We study a system of a nonlinear Klein-Gordon equation coupled with Maxwell's equations. We prove the existence of nonradial solutions which are radially symmetric when restricted to a hyperplane, and either periodic or non-periodic in the orthogonal direction to that very hyperplane.
    Mathematics Subject Classification: Primary: 35J47, 35D30; Secondary: 35J91.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Analysis, 14 (1973), 349-381.doi: 10.1016/0022-1236(73)90051-7.

    [2]

    A. Azzollini, Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity, J. Differential Equations, 249 (2010), 1746-1763.doi: 10.1016/j.jde.2010.07.007.

    [3]

    M. Badiale, V. Benci and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. Eur. Math. Soc., 9 (2007), 355-381.doi: 10.4171/JEMS/83.

    [4]

    V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.doi: 10.1142/S0129055X02001168.

    [5]

    D. Cassani, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations, Nonlinear Anal., 58 (2004), 733-747.doi: 10.1016/j.na.2003.05.001.

    [6]

    T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906.

    [7]

    T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322.

    [8]

    P. d'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2 (2002), 177-192.

    [9]

    M. J. Esteban and P.-L. Lions, A compactness lemma, Nonlinear Analysis, 7 (1983), 381-385.

    [10]

    P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.

    [11]

    P.-L. Lions, The concentration-compactness method in the calculus of variations. The locally compact case, II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.

    [12]

    P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,'' CBMS Regional Conference Series in Mathematics, 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC, American Mathematical Society, Providence, RI, 1986.

    [13]

    M. Willem, "Minimax Theorems,'' Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, 1996.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(89) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return