\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Measure rigidity for some transcendental meromorphic functions

Abstract Related Papers Cited by
  • We consider hyperbolic meromorphic functions of the following form $f(z)=R\circ\exp(z)$, where $R$ is a non-constant rational function, satisfying so-called rapid derivative growth condition. We study several types of conjugacies in this class and prove a~measure rigidity theorem in the case when $f$ has a logarithmic tract over $\infty$ and under some additional assumptions.
    Mathematics Subject Classification: Primary: 37F10; Secondary: 30D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Badeńska, Real analyticity of Jacobian of invariant measures for hyperbolic meromorphic functions, Bull. Lond. Math. Soc., 40 (2008), 1017-1024.doi: 10.1112/blms/bdn083.

    [2]

    K. Barański, B. Karpnińska and A. ZdunikHyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts, Int. Math. Res. Not. IMRN, 2009, 615-624.

    [3]

    W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc., 29 (1993), 151-188.doi: 10.1090/S0273-0979-1993-00432-4.

    [4]

    R. L. Devaney and L. Keen, Dynamics of meromorphic maps: Maps with polynomial Schwarzian derivative, Ann. Sci. École Norm. Sup. (4), 22 (1989), 55-79.

    [5]

    E. Hille, "Analytic Function Theory," Vol. II, Introductions to Higher Mathematics, Ginn and Co., Boston, Mass.-New York-Toronto, Ont., 1962.

    [6]

    J. Kotus and M. Urbański, The class of pseudo non-recurrent elliptic functions; geometry and dynamics, preprint, 2007. Available from: http://www.math.unt.edu/~urbanski.

    [7]

    J. Kotus and M. Urbański, Fractal measures and ergodic theory of transcendental meromorphic functions, in "Transcendental Dynamics and Complex Analysis," London Math. Soc. Lecture Note Ser., 348, Cambridge Univ. Press, Cambridge, (2008), 251-316.

    [8]

    V. Mayer, Comparing measures and invariant line fields, Ergodic Theory Dynam. Systems, 22 (2002), 555-570.

    [9]

    V. Mayer and M. Urbański, Geometric thermodynamical formalism and real analyticity for meromorphic functions of finite order, Ergodic Theory Dynam. Systems, 28 (2008), 915-946.

    [10]

    V. Mayer and M. Urbański, Thermodynamical formalism and multifractal analysis for meromorphic functions of finite order, Mem. Amer. Math. Soc., 203 (2010), vi+107 pp.

    [11]

    R. Nevanlinna, "Analytic Functions," Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer Verlag, New York-Berlin, 1970.

    [12]

    F. Przytycki and M. Urbański, Rigidity of tame rational functions, Bull. Polish Acad. Sci. Math., 47 (1999), 163-182.

    [13]

    L. Rempe, Hyperbolic dimension and radial Julia sets of transcendental functions, Proc. Amer. Math. Soc., 137 (2009), 1411-1420.doi: 10.1090/S0002-9939-08-09650-0.

    [14]

    L. Rempe and S. Van Strien, Absence of line fields and Mané's theorem for nonrecurrent transcendental functions, Trans. Amer. Math. Soc., 363 (2011), 203-228.doi: 10.1090/S0002-9947-2010-05125-6.

    [15]

    G. Stallard, The Hausdorff dimension of Julia sets of entire functions. II, Math. Proc. Cambridge Philos. Soc., 119 (1996), 513-536.doi: 10.1017/S0305004100074387.

    [16]

    D. Sullivan, Quasiconformal homeomorphisms in dynamics, topology, and geometry, in "Proc. Internat. Congress of Math." (Berkeley, Calif., 1986), Vol. 1, 2, Amer. Math. Soc., Providence, RI, (1987), 1216-1228.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return