\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On Hausdorff dimension and cusp excursions for Fuchsian groups

Abstract Related Papers Cited by
  • Certain subsets of limit sets of geometrically finite Fuchsian groups with parabolic elements are considered. It is known that Jarník limit sets determine a "weak multifractal spectrum" of the Patterson measure in this situation. This paper will describe a natural generalisation of these sets, called strict Jarník limit sets, and show how these give rise to another weak multifractal spectrum. Number-theoretical interpretations of these results in terms of continued fractions will also be given.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. F. Beardon, The exponent of convergence of Poincaré series, Proc. London Math. Soc. (3), 18 (1968), 461-483.

    [2]

    A. F. Beardon, "The Geometry of Discrete Groups,'' Graduate Texts in Mathematics, 91, Springer-Verlag, New York, 1983.

    [3]

    A. F. Beardon and B. Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math., 132 (1974), 1-12.doi: 10.1007/BF02392106.

    [4]

    A. S. Besicovitch, Sets of fractional dimension (IV): On rational approximation to real numbers, Jour. London Math. Soc., 9 (1934), 126-131.doi: 10.1112/jlms/s1-9.2.126.

    [5]

    P. Billingsley, "Convergence of Probability Measures,'' Second edition, Wiley Series in Probability and Statistics: Probability and Statistics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1999.

    [6]

    C. J. Bishop and P. W. Jones, Hausdorff dimension and Kleinian groups, Acta Math., 179 (1997), 1-39.doi: 10.1007/BF02392718.

    [7]

    K. Falconer, "Fractal Geometry,'' Mathematical Foundations and Applications, John Wiley & Sons, Ldt., Chichester, 1990.

    [8]

    A.-H. Fan, L.-M. Liao, B.-W. Wang and J. Wu, On Khintchine exponents and Lyapunov exponents of continued fractions, Ergod. Th. Dynam. Sys., 29 (2009), 73-109.doi: 10.1017/S0143385708000138.

    [9]

    O. Frostman, Potential d'équilibre et capacité des ensembles avec quelque applications à la théorie des fonctions, Meddel. Lunds Univ. Math. Sem., 3 (1935), 1-118.

    [10]

    I. J. Good, The fractional dimensional theory of continued fractions, Proc. Cambridge Phil. Soc., 37 (1941), 199-228.doi: 10.1017/S030500410002171X.

    [11]

    R. Hill and S. L. Velani, The Jarník-Besicovitch theorem for geometrically finite Kleinian groups, Proc. London Math. Soc. (3), 77 (1998), 524-550.doi: 10.1112/S0024611598000550.

    [12]

    J. Jaerisch and M. Kesseböhmer, The arithmetic-geometric scaling spectrum for continued fractions, Ark. Mat., 48 (2010), 335-360.doi: 10.1007/s11512-009-0102-8.

    [13]

    V. Jarník, Diophantische approximationen and Hausdorff mass, Mathematicheskii Sbornik, 36 (1929), 371-382.

    [14]

    T. Jordan and M. Rams, Increasing digits subsystems of infinite iterated function systems, Proc. of the Amer. Math. Soc., 140 (2011), 1267-1279.doi: 10.1090/S0002-9939-2011-10969-9.

    [15]

    A. Ya. Khinchin, "Continued Fractions,'' The University of Chicago Press, Chicago, Ill.-London, 1964.

    [16]

    P. J. Nicholls, "The Ergodic Theory of Discrete Groups,'' Springer-Verlag, 1983.

    [17]

    S. J. Patterson, The limit set of a Fuchsian group, Acta Math., 136 (1976), 241-273.doi: 10.1007/BF02392046.

    [18]

    C. Series, The modular surface and continued fractions, J. London Math. Soc. (2), 31 (1985), 69-80.doi: 10.1112/jlms/s2-31.1.69.

    [19]

    B. O. Stratmann, Fractal dimensions for Jarník limit sets of geometrically finite Kleinian groups; the semi-classical approach, Ark. Mat., 33 (1995), 385-403.doi: 10.1007/BF02559716.

    [20]

    B. O. Stratmann, Weak singularity spectra of the Patterson measure for geometrically finite Kleinian groups with parabolic elements, Michigan Math. J., 46 (1999), 573-587.

    [21]

    B. O. Stratmann, The exponent of convergence of Kleinian groups; on a theorem of Bishop and Jones, in "Fractal Geometry and Stochastics III," Progr. Probab., 57, Birkhäuser, Basel, (2004), 93-107.

    [22]

    B. O. Stratmann and S. Velani, The Patterson measure for geometrically finite groups with parabolic elements, new and old, Proc. London Math. Soc. (3), 71 (1995), 197-220.doi: 10.1112/plms/s3-71.1.197.

    [23]

    D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 171-202.

    [24]

    D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., 153 (1984), 259-277.doi: 10.1007/BF02392379.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(100) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return