-
Previous Article
A new variation of Bowen's formula for graph directed Markov systems
- DCDS Home
- This Issue
-
Next Article
On Hausdorff dimension and cusp excursions for Fuchsian groups
The Ruelle spectrum of generic transfer operators
1. | Université d’Avignon, Laboratoire d’Analyse non linéraire et Géométrie, 33, rue Louis Pasteur, 84000, France |
References:
[1] |
Viviane Baladi, "Positive Transfer Operators and Decay of Correlations," Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing Co, Inc., River Edge, NJ, 2000. |
[2] |
Oscar F. Bandtlow and Oliver Jenkinson, Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions, Adv. Math., 218 (2008), 902-925.
doi: 10.1016/j.aim.2008.02.005. |
[3] |
Oscar F. Bandtlow and Oliver Jenkinson, On the Ruelle eigenvalue sequence, Ergodic Theory Dynam. Systems, 28 (2008), 1701-1711.
doi: 10.1017/S0143385708000059. |
[4] |
T. Christiansen, Several complex variables and the distribution of resonances in potential scattering, Comm. Math. Phys., 259 (2005), 711-728.
doi: 10.1007/s00220-005-1381-y. |
[5] |
T. J. Christiansen, Several complex variables and the order of growth of the resonance counting function in Euclidean scattering, Int. Math. Res. Not., 2006, Art. ID 43160, 36 pp. |
[6] |
David Fried, The zeta functions of Ruelle and Selberg. I, Ann. Sci. École Norm. Sup. (4), 19 (1986), 491-517. |
[7] |
Israel Gohberg, Seymour Goldberg and Nahum Krupnik, "Traces and Determinants of Linear Operators," Operator Theory: Advances and Applications, 116, Birkhäuser Verlag, Basel, 2000. |
[8] |
Pierre Lelong and Lawrence Gruman, "Entire Functions of Several Complex Variables," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 282, Springer-Verlag, Berlin, 1986. |
[9] |
Thomas Ransford, "Potential Theory in the Complex Plane," London Mathematical Society Student Texts, 28, Cambridge University Press, Cambridge, 1995. |
[10] |
David Ruelle, Zeta-functions for expanding maps and Anosov flows, Invent. Math., 34 (1976), 231-242. |
show all references
References:
[1] |
Viviane Baladi, "Positive Transfer Operators and Decay of Correlations," Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing Co, Inc., River Edge, NJ, 2000. |
[2] |
Oscar F. Bandtlow and Oliver Jenkinson, Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions, Adv. Math., 218 (2008), 902-925.
doi: 10.1016/j.aim.2008.02.005. |
[3] |
Oscar F. Bandtlow and Oliver Jenkinson, On the Ruelle eigenvalue sequence, Ergodic Theory Dynam. Systems, 28 (2008), 1701-1711.
doi: 10.1017/S0143385708000059. |
[4] |
T. Christiansen, Several complex variables and the distribution of resonances in potential scattering, Comm. Math. Phys., 259 (2005), 711-728.
doi: 10.1007/s00220-005-1381-y. |
[5] |
T. J. Christiansen, Several complex variables and the order of growth of the resonance counting function in Euclidean scattering, Int. Math. Res. Not., 2006, Art. ID 43160, 36 pp. |
[6] |
David Fried, The zeta functions of Ruelle and Selberg. I, Ann. Sci. École Norm. Sup. (4), 19 (1986), 491-517. |
[7] |
Israel Gohberg, Seymour Goldberg and Nahum Krupnik, "Traces and Determinants of Linear Operators," Operator Theory: Advances and Applications, 116, Birkhäuser Verlag, Basel, 2000. |
[8] |
Pierre Lelong and Lawrence Gruman, "Entire Functions of Several Complex Variables," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 282, Springer-Verlag, Berlin, 1986. |
[9] |
Thomas Ransford, "Potential Theory in the Complex Plane," London Mathematical Society Student Texts, 28, Cambridge University Press, Cambridge, 1995. |
[10] |
David Ruelle, Zeta-functions for expanding maps and Anosov flows, Invent. Math., 34 (1976), 231-242. |
[1] |
Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457 |
[2] |
Martin Lustig, Caglar Uyanik. Perron-Frobenius theory and frequency convergence for reducible substitutions. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 355-385. doi: 10.3934/dcds.2017015 |
[3] |
Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009 |
[4] |
Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003 |
[5] |
Vesselin Petkov, Luchezar Stoyanov. Ruelle transfer operators with two complex parameters and applications. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6413-6451. doi: 10.3934/dcds.2016077 |
[6] |
Marc Kesseböhmer, Sabrina Kombrink. A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 335-352. doi: 10.3934/dcdss.2017016 |
[7] |
Jiu Ding, Noah H. Rhee. A unified maximum entropy method via spline functions for Frobenius-Perron operators. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 235-245. doi: 10.3934/naco.2013.3.235 |
[8] |
Katsukuni Nakagawa. Compactness of transfer operators and spectral representation of Ruelle zeta functions for super-continuous functions. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6331-6350. doi: 10.3934/dcds.2020282 |
[9] |
Guangcun Lu. Parameterized splitting theorems and bifurcations for potential operators, Part I: Abstract theory. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1243-1316. doi: 10.3934/dcds.2021154 |
[10] |
Vincenzo Recupero. Hysteresis operators in metric spaces. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 773-792. doi: 10.3934/dcdss.2015.8.773 |
[11] |
Vesselin Petkov, Luchezar Stoyanov. Spectral estimates for Ruelle operators with two parameters and sharp large deviations. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6391-6417. doi: 10.3934/dcds.2019277 |
[12] |
Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581 |
[13] |
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917 |
[14] |
Chantelle Blachut, Cecilia González-Tokman. A tale of two vortices: How numerical ergodic theory and transfer operators reveal fundamental changes to coherent structures in non-autonomous dynamical systems. Journal of Computational Dynamics, 2020, 7 (2) : 369-399. doi: 10.3934/jcd.2020015 |
[15] |
François Hamel, Emmanuel Russ, Nikolai Nadirashvili. Comparisons of eigenvalues of second order elliptic operators. Conference Publications, 2007, 2007 (Special) : 477-486. doi: 10.3934/proc.2007.2007.477 |
[16] |
Miklós Horváth, Márton Kiss. A bound for ratios of eigenvalues of Schrodinger operators on the real line. Conference Publications, 2005, 2005 (Special) : 403-409. doi: 10.3934/proc.2005.2005.403 |
[17] |
Dachun Yang, Sibei Yang. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2135-2160. doi: 10.3934/cpaa.2016031 |
[18] |
Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249 |
[19] |
Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417 |
[20] |
Niels Jacob, Feng-Yu Wang. Higher order eigenvalues for non-local Schrödinger operators. Communications on Pure and Applied Analysis, 2018, 17 (1) : 191-208. doi: 10.3934/cpaa.2018012 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]