Citation: |
[1] |
R. Brück, Geometric properties of Julia sets of the composition of polynomials of the form $z^{2}+c_n$, Pacific J. Math., 198 (2001), 347-372.doi: 10.2140/pjm.2001.198.347. |
[2] |
R. Brück, M. Büger and S. Reitz, Random iterations of polynomials of the form $z^2+c_n$: Connectedness of Julia sets, Ergodic Theory Dynam. Systems, 19 (1999), 1221-1231.doi: 10.1017/S0143385799141658. |
[3] |
M. Büger, Self-similarity of Julia sets of the composition of polynomials, Ergodic Theory Dynam. Systems, 17 (1997), 1289-1297.doi: 10.1017/S0143385797086458. |
[4] |
M. Büger, On the composition of polynomials of the form $z^2+c_n$, Math. Ann., 310 (1998), 661-683.doi: 10.1007/s002080050165. |
[5] |
J. E. Fornaess and N. Sibony, Random iterations of rational functions, Ergodic Theory Dynam. Systems, 11 (1991), 687-708.doi: 10.1017/S0143385700006428. |
[6] |
Z. Gong, W. Qiu and Y. Li, Connectedness of Julia sets for a quadratic random dynamical system, Ergodic Theory Dynam. Systems, 23 (2003), 1807-1815.doi: 10.1017/S0143385703000129. |
[7] |
A. Hinkkanen and G. J. Martin, The dynamics of semigroups of rational functions. I, Proc. London Math. Soc. (3), 73 (1996), 358-384.doi: 10.1112/plms/s3-73.2.358. |
[8] |
M. Jonsson, Dynamics of polynomial skew products on $\C ^{2}$, Math. Ann., 314 (1999), 403-447.doi: 10.1007/s002080050301. |
[9] |
M. Jonsson, Ergodic properties of fibered rational maps, Ark. Mat., 38 (2000), 281-317.doi: 10.1007/BF02384321. |
[10] |
R. D. Mauldin and M. Urbański, "Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets,'' Cambridge Tracts in Mathematics, 148, Cambridge Univ. Press, Cambridge, 2003. |
[11] |
J. Milnor, "Dynamics in One Complex Variable," Third Edition, Annals of Mathematical Studies, 160, Princeton University Press, Princeton, NJ, 2006. |
[12] |
F. Przytycki and M. Urbański, "Fractals in the Plane-The Ergodic Theory Methods,'' to be published from Cambridge University Press. Available from: http://www.math.unt.edu/~urbanski/. |
[13] |
T. Ransford, "Potential Theory in the Complex Plane," London Mathematical Society Student Texts, 28, Cambridge University Press, Cambridge, 1995. |
[14] |
O. Sester, Combinatorial configurations of fibered polynomials, Ergodic Theory Dynam. Systems, 21 (2001), 915-955. |
[15] |
R. Stankewitz, T. Sugawa and H. Sumi, Some counterexamples in dynamics of rational semigroups, Annales Academiae Scientiarum Fennicae Mathematica, 29 (2004), 357-366. |
[16] |
R. Stankewitz and H. Sumi, Dynamical properties and structure of Julia sets of postcritically bounded polynomial semigroups, Trans. Amer. Math. Soc., 363 (2011), 5293-5319.doi: 10.1090/S0002-9947-2011-05199-8. |
[17] |
H. Sumi, On dynamics of hyperbolic rational semigroups, J. Math. Kyoto Univ., 37 (1997), 717-733. |
[18] |
H. Sumi, On Hausdorff dimension of Julia sets of hyperbolic rational semigroups, Kodai Mathematical Journal, 21 (1998), 10-28.doi: 10.2996/kmj/1138043831. |
[19] |
H. Sumi, Skew product maps related to finitely generated rational semigroups, Nonlinearity, 13 (2000), 995-1019.doi: 10.1088/0951-7715/13/4/302. |
[20] |
H. Sumi, Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products, Ergodic Theory Dynam. Systems, 21 (2001), 563-603. |
[21] |
H. Sumi, Dimensions of Julia sets of expanding rational semigroups, Kodai Mathematical Journal, 28 (2005), 390-422.doi: 10.2996/kmj/1123767019. |
[22] |
H. Sumi, Semi-hyperbolic fibered rational maps and rational semigroups, Ergodic Theory Dynam. Systems, 26 (2006), 893-922.doi: 10.1017/S0143385705000532. |
[23] |
H. Sumi, Random dynamics of polynomials and devil's-staircase-like functions in the complex plane, Appl. Math. Comput., 187 (2007), 489-500.doi: 10.1016/j.amc.2006.08.149. |
[24] |
H. Sumi, The space of postcritically bounded 2-generator polynomial semigroups with hyperbolicity, RIMS Kokyuroku, 1494 (2006), 62-86. |
[25] |
H. Sumi, Dynamics of postcritically bounded polynomial semigroups I: Connected components of the Julia sets, Discrete and Continuous Dynamical Systems Ser. A, 29 (2011), 1205-1244.doi: 10.3934/dcds.2011.29.1205. |
[26] |
H. Sumi, Dynamics of postcritically bounded polynomial semigroups II: Fiberwise dynamics and the Julia sets, preprint, arXiv:1007.0613. |
[27] |
H. Sumi, Dynamics of postcritically bounded polynomial semigroups III: Classification of semi-hyperbolic semigroups and random Julia sets which are Jordan curves but not quasicircles, Ergodic Theory Dynam. Systems, 30 (2010), 1869-1902.doi: 10.1017/S0143385709000923. |
[28] |
H. Sumi, Interaction cohomology of forward or backward self-similar systems, Adv. Math., 222 (2009), 729-781.doi: 10.1016/j.aim.2009.04.007. |
[29] |
H. Sumi, Random complex dynamics and semigroups of holomorphic maps, Proc. London Math. Soc. (3), 102 (2011), 50-112.doi: 10.1112/plms/pdq013. |
[30] |
H. Sumi and M. Urbański, The equilibrium states for semigroups of rational maps, Monatsh. Math., 156 (2009), 371-390.doi: 10.1007/s00605-008-0016-8. |
[31] |
H. Sumi and M. Urbański, Real analyticity of Hausdorff dimension for expanding rational semigroups, Ergodic Theory Dynam. Systems, 30 (2010), 601-633.doi: 10.1017/S0143385709000297. |
[32] |
H. Sumi and M. Urbański, Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups, Discrete and Continuous Dynamical Systems Ser. A, 30 (2011), 313-363.doi: 10.3934/dcds.2011.30.313. |
[33] |
H. Sumi and M. Urbański, Transversality family of expanding rational semigroups, preprint, 2011, arXiv:1109.2380. |
[34] |
A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math., 99 (1990), 627-649.doi: 10.1007/BF01234434. |
[35] |
W. Zhou and F. Ren, The Julia sets of the random iteration of rational functions, Chinese Sci. Bulletin., 37 (1992), 969-971. |